000582597 001__ 582597
000582597 005__ 20240110164733.0
000582597 0247_ $$2doi$$a10.1021/acs.langmuir.1c01108
000582597 0247_ $$2ISSN$$a0743-7463
000582597 0247_ $$2ISSN$$a1520-5827
000582597 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-02085
000582597 0247_ $$2pmid$$a34288683
000582597 0247_ $$2WOS$$aWOS:000683367100021
000582597 037__ $$aPUBDB-2023-02085
000582597 041__ $$aEnglish
000582597 082__ $$a540
000582597 1001_ $$0P:(DE-H253)PIP1008088$$aBrezesinski, G.$$b0
000582597 245__ $$aInfluence of Stereochemistry on the Monolayer Characteristics of N-alkanoyl-Substituted Threonine and Serine Amphiphiles at the Air–Water Interface
000582597 260__ $$aWashington, DC$$bACS Publ.$$c2021
000582597 3367_ $$2DRIVER$$aarticle
000582597 3367_ $$2DataCite$$aOutput Types/Journal article
000582597 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683531840_976528
000582597 3367_ $$2BibTeX$$aARTICLE
000582597 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000582597 3367_ $$00$$2EndNote$$aJournal Article
000582597 520__ $$aThermodynamic and structural properties of the N-alkanoyl-substituted α-amino acids threonine and serine, differing only by one CH$_3$ group in the head group, are determined and compared. Detailed characterization of the influence of stereochemistry proves that all enantiomers form an oblique monolayer lattice structure whereas the corresponding racemates build orthorhombic lattice structures due to dominating heterochiral interactions, except N-C16-dl-serine-ME as first example of dominating homochiral interactions in a racemic mixture of N-alkanoyl-substituted α-amino acids. In all cases, the liquid expanded–liquid condensed (LE/LC) transition pressure of the racemic mixtures is above that of the corresponding enantiomers. Phase diagrams are proposed. Using the program Hardpack to predict tilt angles and cross-sectional area of the alkyl chains shows reasonable agreement with the experimental grazing incidence X-ray diffraction (GIXD) data.
000582597 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000582597 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000582597 693__ $$0EXP:(DE-H253)D-BW1-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-BW1-20150101$$aDORIS III$$fDORIS Beamline BW1$$x0
000582597 7001_ $$0P:(DE-H253)PIP1087741$$aStrati, F.$$b1$$udesy
000582597 7001_ $$00000-0003-4429-4875$$aRudert, R.$$b2
000582597 7001_ $$00000-0002-5297-4638$$aVollhardt, D.$$b3$$eCorresponding author
000582597 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.1c01108$$gVol. 37, no. 30, p. 9069 - 9077$$n30$$p9069 - 9077$$tLangmuir$$v37$$x0743-7463$$y2021
000582597 8564_ $$uhttps://bib-pubdb1.desy.de/record/582597/files/acs.langmuir.1c01108.pdf$$yOpenAccess
000582597 8564_ $$uhttps://bib-pubdb1.desy.de/record/582597/files/acs.langmuir.1c01108.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000582597 909CO $$ooai:bib-pubdb1.desy.de:582597$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000582597 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008088$$aExternal Institute$$b0$$kExtern
000582597 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1087741$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000582597 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1087741$$aCentre for Structural Systems Biology$$b1$$kCSSB
000582597 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000582597 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000582597 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000582597 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000582597 980__ $$ajournal
000582597 980__ $$aVDB
000582597 980__ $$aUNRESTRICTED
000582597 980__ $$aI:(DE-H253)HAS-User-20120731
000582597 9801_ $$aFullTexts