000582569 001__ 582569
000582569 005__ 20231106212033.0
000582569 020__ $$a978-3-95450-231-8
000582569 0247_ $$2doi$$a10.18429/JACoW-IPAC2023-TUPL018
000582569 0247_ $$2inspire$$a2717021
000582569 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-02058
000582569 037__ $$aPUBDB-2023-02058
000582569 041__ $$aEnglish
000582569 1001_ $$0P:(DE-H253)PIP1005062$$aFogel, Vladimir$$b0$$eCorresponding author
000582569 1112_ $$a14th International Particle Accelerator Conference$$cVenice$$d2023-05-07 - 2023-05-12$$gIPAC2023$$wItaly
000582569 245__ $$aOptimization of klystron drive signal and HV shape to reduce energy consumption during operation of the European XFEL
000582569 260__ $$a[Geneva]$$bJACoW Publishing$$c2023
000582569 29510 $$a[Ebook] IPAC'23 : 14th International Particle Accelerator Conference, 7-12 May 2023, Venice, Italy : proceedings / hosting institutions: INFN, Elettra Sincotrone Trieste , [Geneva] : JACoW Publishing, [2023],
000582569 300__ $$a1806-1808
000582569 3367_ $$2ORCID$$aCONFERENCE_PAPER
000582569 3367_ $$033$$2EndNote$$aConference Paper
000582569 3367_ $$2BibTeX$$aINPROCEEDINGS
000582569 3367_ $$2DRIVER$$aconferenceObject
000582569 3367_ $$2DataCite$$aOutput Types/Conference Paper
000582569 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1699267087_3197790
000582569 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000582569 500__ $$aLiteraturangaben;
000582569 520__ $$aCurrently 26 RF stations are in operation at the European X-ray Free Electron Laser (XFEL) and all RF stations can deliver sufficient power to support 600 µs beam pulse with an energy up to 17 GeV. These beam parameters require a power consumption of about 4.9 MW for high-power RF. Of course, the simplest way to save power is to reduce the XFEL repetition rate, but with some additional work and research, and without modifying any hardware, we can save the modulator power, without any impact on the XFEL performance. To reduce the power, we offer two methods that can be used together or separately. The first one is to make full use of the available power of the klys-tron during the rise and fall time of the HV pulse, and partial use of the available power during cavity filling by using phase and amplitude compensation. As a result, we can reduce the length of the HV pulse, because we fill the cavities with energy earlier. The second one is to slowly reduce the klystron HV during flattop. In total we can reduce the power consumption up to 30%, at the cost of making the low-level RF control more complicated as it needs to deal with large phase and amplitude changes. To solve this problem, we propose a new feature, dynamic output vector correction (OVC). In this report we will present some of experimental results from the klystron test stand and from several XFEL RF stations.
000582569 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000582569 588__ $$aDataset connected to DataCite
000582569 650_7 $$2Other$$aAccelerator Physics
000582569 650_7 $$2Other$$amc2-photon-sources-and-electron-accelerators - MC2: Photon Sources and Electron Accelerators
000582569 650_7 $$2Other$$amc2-a06-free-electron-lasers - MC2.A06: Free Electron Lasers
000582569 693__ $$0EXP:(DE-H253)XFEL(machine)-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL(machine)-20150101$$aXFEL$$eFacility (machine) XFEL$$x0
000582569 7001_ $$0P:(DE-H253)PIP1005222$$aAyvazyan, Valeri$$b1
000582569 7001_ $$0P:(DE-H253)PIP1080593$$aBellandi, Andrea$$b2
000582569 7001_ $$0P:(DE-H253)PIP1014945$$aBranlard, Julien$$b3
000582569 7001_ $$0P:(DE-H253)PIP1012894$$aBousonville, Michael$$b4
000582569 7001_ $$0P:(DE-H253)PIP1007075$$aButkowski, Lukasz$$b5
000582569 7001_ $$0P:(DE-H253)PIP1006622$$aCherepenko, Andrey$$b6
000582569 7001_ $$0P:(DE-H253)PIP1003160$$aChoroba, Stefan$$b7
000582569 7001_ $$0P:(DE-H253)PIP1096993$$aDiomede, Marco$$b8
000582569 7001_ $$0P:(DE-H253)PIP1002739$$aEckoldt, Hans-Joerg$$b9
000582569 7001_ $$0P:(DE-H253)PIP1006205$$aGoeller, Sebastian$$b10
000582569 7001_ $$0P:(DE-H253)PIP1005527$$aHartung, Jens$$b11
000582569 7001_ $$0P:(DE-H253)PIP1002463$$aHauberg, Axel$$b12
000582569 7001_ $$0P:(DE-H253)PIP1001358$$aWalker, Nicholas John$$b13
000582569 7001_ $$0P:(DE-H253)PIP1006409$$aWeinhausen, Timo$$b14
000582569 773__ $$a10.18429/JACoW-IPAC2023-TUPL018
000582569 8564_ $$u10.18429/JACoW-IPAC2023-TUPL018
000582569 8564_ $$uhttps://bib-pubdb1.desy.de/record/582569/files/HTML-Approval_of_scientific_publication.html
000582569 8564_ $$uhttps://bib-pubdb1.desy.de/record/582569/files/PDF-Approval_of_scientific_publication.pdf
000582569 8564_ $$uhttps://bib-pubdb1.desy.de/record/582569/files/TUPL018.1.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000582569 8564_ $$uhttps://bib-pubdb1.desy.de/record/582569/files/TUPL018.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000582569 8564_ $$uhttps://bib-pubdb1.desy.de/record/582569/files/TUPL018.1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess$$zStatID:(DE-HGF)0510
000582569 8564_ $$uhttps://bib-pubdb1.desy.de/record/582569/files/TUPL018.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599
000582569 909CO $$ooai:bib-pubdb1.desy.de:582569$$popen_access$$popenaire$$pVDB$$pdriver$$pdnbdelivery
000582569 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1005062$$aExternal Institute$$b0$$kExtern
000582569 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005222$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000582569 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1080593$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000582569 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1014945$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000582569 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012894$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000582569 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007075$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000582569 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006622$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000582569 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003160$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000582569 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1096993$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000582569 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002739$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY
000582569 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006205$$aDeutsches Elektronen-Synchrotron$$b10$$kDESY
000582569 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005527$$aDeutsches Elektronen-Synchrotron$$b11$$kDESY
000582569 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002463$$aDeutsches Elektronen-Synchrotron$$b12$$kDESY
000582569 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001358$$aDeutsches Elektronen-Synchrotron$$b13$$kDESY
000582569 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006409$$aDeutsches Elektronen-Synchrotron$$b14$$kDESY
000582569 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000582569 9141_ $$y2023
000582569 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000582569 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000582569 9201_ $$0I:(DE-H253)MHF-20220923$$kMHF$$lHochfrequenztechnik Radio Frequency Tech$$x0
000582569 9201_ $$0I:(DE-H253)MPC-20210120$$kMPC$$lEntwicklung Leistungselektronik$$x1
000582569 9201_ $$0I:(DE-H253)MSK-20120731$$kMSK$$lStrahlkontrollen$$x2
000582569 980__ $$acontrib
000582569 980__ $$aVDB
000582569 980__ $$aUNRESTRICTED
000582569 980__ $$acontb
000582569 980__ $$aI:(DE-H253)MHF-20220923
000582569 980__ $$aI:(DE-H253)MPC-20210120
000582569 980__ $$aI:(DE-H253)MSK-20120731
000582569 9801_ $$aFullTexts