001     580738
005     20250715173252.0
024 7 _ |a 10.1103/PhysRevResearch.5.033112
|2 doi
024 7 _ |a 10.3204/PUBDB-2023-01407
|2 datacite_doi
024 7 _ |a altmetric:153210069
|2 altmetric
024 7 _ |a WOS:001052921300001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4385977755
037 _ _ |a PUBDB-2023-01407
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Mewes, Steven Mathis
|0 P:(DE-H253)PIP1083142
|b 0
|e Corresponding author
245 _ _ |a Demonstration of tunability of HOFI waveguides via start-to-end simulations
260 _ _ |a College Park, MD
|c 2023
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1698842865_1121336
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recent years, hydrodynamic optical-field-ionized (HOFI) channels have emerged as a promising technique to create laser waveguides suitable for guiding tightly focused laser pulses in a plasma, as needed for laser-plasma accelerators. While experimental advances in HOFI channels continue to be made, the underlying mechanisms and the roles of the main parameters remain largely unexplored. In this paper, we propose a start-to-end simulation pipeline of the HOFI channel formation and the resulting laser guiding and use it to explore the underlying physics and the tunability of HOFI channels. This approach is benchmarked against experimental measurements. HOFI channels are shown to feature excellent guiding properties over a wide range of parameters, making them a promising and tunable waveguide option for laser-plasma accelerators.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Boyle, Gregory James
|0 P:(DE-H253)PIP1083196
|b 1
700 1 _ |a Ferran Pousa, Angel
|0 P:(DE-H253)PIP1028679
|b 2
700 1 _ |a Shalloo, Rob
|0 P:(DE-H253)PIP1093266
|b 3
|u desy
700 1 _ |a Osterhoff, Jens
|0 P:(DE-H253)PIP1012785
|b 4
|u desy
700 1 _ |a Arran, Christopher
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Corner, Laura
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Walczak, Roman
|0 P:(DE-H253)PIP1001357
|b 7
700 1 _ |a Hooker, Simon
|0 P:(DE-H253)PIP1032810
|b 8
700 1 _ |a Thévenet, Maxence
|0 P:(DE-H253)PIP1093740
|b 9
|u desy
773 _ _ |a 10.1103/PhysRevResearch.5.033112
|g Vol. 5, no. 3, p. 033112
|0 PERI:(DE-600)3004165-X
|n 3
|p 033112
|t Physical review research
|v 5
|y 2023
|x 2643-1564
856 4 _ |u https://bib-pubdb1.desy.de/record/580738/files/Copyright_Agreement.pdf
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/580738/files/HOFI_simulations.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/580738/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/580738/files/Invoice_INV_23_JUL_011428-1-1.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/580738/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/580738/files/Receipt_INV_23_JUL_011428.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/580738/files/Copyright_Agreement.pdf?subformat=pdfa
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/580738/files/HOFI_Simulations_Published.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/580738/files/Invoice_INV_23_JUL_011428-1-1.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/580738/files/Receipt_INV_23_JUL_011428.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/580738/files/HOFI_Simulations_Published.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/580738/files/HOFI_simulations.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:580738
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1083142
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1083142
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1083196
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1028679
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1093266
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1012785
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1001357
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1093740
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-16T10:08:58Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-09-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-08-16T10:08:58Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-09-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV RES : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
920 1 _ |0 I:(DE-H253)MPA1-20210408
|k MPA1
|l Plasma Theory and Simulations
|x 0
920 1 _ |0 I:(DE-H253)MPA-20200816
|k MPA
|l Plasma Accelerators
|x 1
920 1 _ |0 I:(DE-H253)MPA4-20220318
|k MPA4
|l PAs for Industrial and Health Applicatio
|x 2
920 1 _ |0 I:(DE-H253)OXFORD-20190730
|k OXFORD
|l University of Oxford
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MPA1-20210408
980 _ _ |a I:(DE-H253)MPA-20200816
980 _ _ |a I:(DE-H253)MPA4-20220318
980 _ _ |a I:(DE-H253)OXFORD-20190730
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21