000580541 001__ 580541
000580541 005__ 20230322214110.0
000580541 037__ $$aPUBDB-2023-01301
000580541 041__ $$aEnglish
000580541 1001_ $$0P:(DE-H253)PIP1092635$$aMueller, Henri$$b0$$eFirst author
000580541 1112_ $$a16th European Conference on Fungal Genetics$$cInnsbruck$$d2023-03-05 - 2023-03-08$$gECFG16$$wGermany
000580541 245__ $$aSynchrotron radiation-based X-ray microtomography for three-dimensional growth analysis of Aspergillus niger pellets
000580541 260__ $$c2023
000580541 3367_ $$033$$2EndNote$$aConference Paper
000580541 3367_ $$2BibTeX$$aINPROCEEDINGS
000580541 3367_ $$2DRIVER$$aconferenceObject
000580541 3367_ $$2ORCID$$aCONFERENCE_POSTER
000580541 3367_ $$2DataCite$$aOutput Types/Conference Poster
000580541 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1679482436_2419
000580541 502__ $$cTechnische Universität München
000580541 520__ $$aFilamentous fungi are an indispensable part of industrial biotechnology. Submerged cultivated in bioreactors with several 100 m³ capacity, these cell factories produce relevant biotechnological compounds. The close relationship between fungal morphology and productivity has led to many high-throughput methods to quantify their macromorphology [1]. Nevertheless, only micro-computed tomography (µCT) is the method of choice to study the three-dimensional micromorphology of fungal pellets during submerged cultivation [2]. However, as morphological heterogeneity of pellets makes it necessary to measure hundreds of pellets per sampling time, there is a need for high-throughput µCT approaches.To meet this challenge, we applied synchrotron radiation based X-ray microtomography at the P05 beamline of PETRAIII (Deutsches Elektronen Synchrotron - DESY) and extended our developed method [2], to generate and analyze 3D images of ~20,000 single fungal pellets. We revealed micro-morphological properties such as number and density of spores, tips, branches, and hyphae from 26 sampling points during 48-hour Aspergillus niger cultivations. The computed data allowed us to follow the growth of submerged cultivated fungal pellets in highly resolved 3D for the first time.With our previously developed methods for diffusion computations and growth simulations of filamentous fungal pellets [3][4], the generated morphological database from synchrotron measurements can be used to understand, describe, and model the growth and substrate supply of fungal cultivations.[1] Müller, Barthel, Schmideder et al., Biotechnol. Bioeng., 2022, doi: 10.1002/bit.28124[2] Schmideder, Barthel et al., Biotechnol. Bioeng., 2019, doi: 10.1002/bit.26956[3] Schmideder, Barthel, Müller et al., Biotechnol. Bioeng., 2019, doi: 10.1002/bit.27166[4] Schmideder, Müller, Barthel et al, Biotechnol. Bioeng., 2020, doi: 10.1002/bit.27622.
000580541 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000580541 536__ $$0G:(DE-H253)I-20200214$$aFS-Proposal: I-20200214 (I-20200214)$$cI-20200214$$x1
000580541 693__ $$0EXP:(DE-H253)P-P05-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P05-20150101$$aPETRA III$$fPETRA Beamline P05$$x0
000580541 7001_ $$0P:(DE-H253)PIP1092641$$aSchmideder, Stefan$$b1
000580541 7001_ $$0P:(DE-H253)PIP1094057$$aBarthel, Lars$$b2
000580541 7001_ $$0P:(DE-H253)PIP1100576$$aDeffur, Charlotte$$b3
000580541 7001_ $$0P:(DE-H253)PIP1008646$$aHammel, Jörg$$b4
000580541 7001_ $$0P:(DE-HGF)0$$aMeyer, Vera$$b5
000580541 7001_ $$0P:(DE-H253)PIP1092638$$aBriesen, Heiko$$b6$$eCorresponding author
000580541 909CO $$ooai:bib-pubdb1.desy.de:580541$$pVDB
000580541 9101_ $$0I:(DE-588b)36241-4$$6P:(DE-H253)PIP1092635$$aTechnische Universität München$$b0$$kTUM
000580541 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092641$$aExternal Institute$$b1$$kExtern
000580541 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094057$$a Technische Universität Berlin$$b2
000580541 9101_ $$0I:(DE-588b)36241-4$$6P:(DE-H253)PIP1100576$$aTechnische Universität München$$b3$$kTUM
000580541 9101_ $$0I:(DE-588b)16087541-9$$6P:(DE-H253)PIP1008646$$aHelmholtz-Zentrum Geesthacht$$b4$$kHZG
000580541 9101_ $$0I:(DE-588b)1231250402$$6P:(DE-H253)PIP1008646$$aHelmholtz-Zentrum Hereon$$b4$$kHereon
000580541 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Technische Universität Berlin$$b5
000580541 9101_ $$0I:(DE-588b)36241-4$$6P:(DE-H253)PIP1092638$$aTechnische Universität München$$b6$$kTUM
000580541 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000580541 9141_ $$y2023
000580541 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000580541 9201_ $$0I:(DE-H253)Hereon-20210428$$kHereon$$lHelmholtz-Zentrum Hereon$$x1
000580541 9201_ $$0I:(DE-588b)36241-4$$kTUM$$lTechnische Universität München$$x2
000580541 980__ $$aposter
000580541 980__ $$aVDB
000580541 980__ $$aI:(DE-H253)HAS-User-20120731
000580541 980__ $$aI:(DE-H253)Hereon-20210428
000580541 980__ $$aI:(DE-588b)36241-4
000580541 980__ $$aUNRESTRICTED