001     580536
005     20250715173254.0
024 7 _ |a 10.1063/5.0152382
|2 doi
024 7 _ |a 2468-080X
|2 ISSN
024 7 _ |a 2468-2047
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2023-01296
|2 datacite_doi
024 7 _ |a altmetric:155243089
|2 altmetric
024 7 _ |a WOS:001122290800001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4387322414
037 _ _ |a PUBDB-2023-01296
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Gong, Zheng
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Spin-polarized electron beam generation in the colliding-pulse injection scheme
260 _ _ |a Melville, NY
|c 2023
|b AIP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1701261149_513040
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Employing colliding-pulse injection has been shown to enable the generation of high-quality electron beams from laser–plasma accelerators. Here, by using test particle simulations, Hamiltonian analysis, and multidimensional particle-in-cell simulations, we lay the theoretical framework for spin-polarized electron beam generation in the colliding-pulse injection scheme. Furthermore, we show that this scheme enables the production of quasi-monoenergetic electron beams in excess of 80% polarization and tens of pC charge with commercial 10-TW-class laser systems.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a 6G2 - FLASH (DESY) (POF4-6G2)
|0 G:(DE-HGF)POF4-6G2
|c POF4-6G2
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a FLASH
|e FLASHForward
|1 EXP:(DE-H253)FLASH-20150101
|0 EXP:(DE-H253)FLASHForward-20150101
|5 EXP:(DE-H253)FLASHForward-20150101
|x 0
700 1 _ |a Michael, J. Quin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bohlen, Simon
|0 P:(DE-H253)PIP1019641
|b 2
|u desy
700 1 _ |a Keitel, Christoph
|0 P:(DE-H253)PIP1024013
|b 3
700 1 _ |a Poder, Kristjan
|0 P:(DE-H253)PIP1030949
|b 4
|u desy
700 1 _ |a Tamburini, Matteo
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1063/5.0152382
|g Vol. 8, no. 6, p. 064005
|0 PERI:(DE-600)2858469-7
|n 6
|p 064005
|t Matter and radiation at extremes
|v 8
|y 2023
|x 2468-080X
856 4 _ |u https://bib-pubdb1.desy.de/record/580536/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/580536/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/580536/files/Paper%20Draft.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://bib-pubdb1.desy.de/record/580536/files/Publishers%20Version.pdf
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://bib-pubdb1.desy.de/record/580536/files/Paper%20Draft.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://bib-pubdb1.desy.de/record/580536/files/Publishers%20Version.pdf?subformat=pdfa
|x pdfa
|y Restricted
|z StatID:(DE-HGF)0599
909 C O |o oai:bib-pubdb1.desy.de:580536
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Max-Planck-Institut für Kernphysik, Heidelberg
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Max-Planck-Institut für Kernphysik, Heidelberg
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1019641
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1024013
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1030949
910 1 _ |a Max-Planck-Institut für Kernphysik, Heidelberg
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G2
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v FLASH (DESY)
|x 1
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MATTER RADIAT EXTREM : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-20T16:35:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2020-01-20T16:35:08Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATTER RADIAT EXTREM : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-20T16:35:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
920 1 _ |0 I:(DE-H253)MPA-20200816
|k MPA
|l Plasma Accelerators
|x 0
920 1 _ |0 I:(DE-H253)D3-20120731
|k D3
|l Strahlenschutz
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)MPA-20200816
980 _ _ |a I:(DE-H253)D3-20120731
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21