001     580354
005     20240112092948.0
024 7 _ |a Funcke:2023jbq
|2 INSPIRETeX
024 7 _ |a inspire:2628722
|2 inspire
024 7 _ |a arXiv:2302.00467
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2023-01222
|2 datacite_doi
037 _ _ |a PUBDB-2023-01222
041 _ _ |a English
088 _ _ |a arXiv:2302.00467
|2 arXiv
088 _ _ |a MIT-CTP/5482
|2 Other
100 1 _ |a Funcke, Lena
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Review on Quantum Computing for Lattice Field Theory
260 _ _ |c 2023
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1678804071_12308
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 25 pages, 9 figures; Proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany
520 _ _ |a In these proceedings, we review recent advances in applying quantum computing to lattice field theory. Quantum computing offers the prospect to simulate lattice field theories in parameter regimes that are largely inaccessible with the conventional Monte Carlo approach, such as the sign-problem afflicted regimes of finite baryon density, topological terms, and out-of-equilibrium dynamics. First proof-of-concept quantum computations of lattice gauge theories in (1+1) dimensions have been accomplished, and first resource-efficient quantum algorithms for lattice gauge theories in (1+1) and (2+1) dimensions have been developed. The path towards quantum computations of (3+1)-dimensional lattice gauge theories, including Lattice QCD, requires many incremental steps of improving both quantum hardware and quantum algorithms. After reviewing these requirements and recent advances, we discuss the main challenges and future directions.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Conference, INSPIRE
650 _ 7 |a computer: quantum
|2 INSPIRE
650 _ 7 |a baryon: density
|2 INSPIRE
650 _ 7 |a lattice field theory
|2 INSPIRE
650 _ 7 |a quantum algorithm
|2 INSPIRE
650 _ 7 |a lattice
|2 INSPIRE
650 _ 7 |a numerical calculations
|2 INSPIRE
650 _ 7 |a hardware
|2 INSPIRE
650 _ 7 |a Monte Carlo
|2 INSPIRE
650 _ 7 |a topological
|2 INSPIRE
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Hartung, Tobias
|b 1
700 1 _ |a Jansen, Karl
|0 P:(DE-H253)PIP1003636
|b 2
|u desy
700 1 _ |a Kühn, Stefan
|0 P:(DE-H253)PIP1086314
|b 3
|u desy
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/580354/files/2302.00467v1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/580354/files/2302.00467v1.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:580354
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1003636
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1086314
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Published
|0 StatID:(DE-HGF)0580
|2 StatID
920 1 _ |0 I:(DE-H253)CQTA-20221102
|k CQTA
|l Centre f. Quantum Techno. a. Application
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CQTA-20221102
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21