001 | 580329 | ||
005 | 20250724131752.0 | ||
024 | 7 | _ | |a 10.1021/acsanm.3c00259 |2 doi |
024 | 7 | _ | |a altmetric:142858685 |2 altmetric |
024 | 7 | _ | |a WOS:000937168200001 |2 WOS |
024 | 7 | _ | |a openalex:W4321617686 |2 openalex |
037 | _ | _ | |a PUBDB-2023-01197 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Shi, Li |0 P:(DE-H253)PIP1013647 |b 0 |
245 | _ | _ | |a Gold Nanoparticle–Polyelectrolyte Complexes with Tunable Structure Probed by Synchrotron Small-Angle X-ray Scattering: Implications for the Production of Colloidal Crystals-Based Nanophotonic Materials |
260 | _ | _ | |a Washington, DC |c 2023 |b ACS Publications |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1682502238_1031085 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Waiting for fulltext |
520 | _ | _ | |a Close-packed colloidal crystals of gold nanoparticles (AuNPs) are of great interest in the field of nanophotonics due to their lattice-pattern-dependent optical properties. One challenge resides in producing such crystalline assemblies by a scalable approach involving polydisperse AuNPs obtained by standard synthesis routes and structuring natural molecules in water at room temperature. Electrostatic complexation between functionalized AuNPs and oppositely charged polyelectrolytes (PELs) is a very simple way to create AuNP self-assemblies of different morphologies and compactness. Our work investigates, using synchrotron small-angle X-ray scattering, their structure as a function of concentration, PEL persistence length and ionic strength. By decreasing the radius, R, of the positively charged gold nanoparticles to a few nm (R ≤ 3 nm) and increasing the polyelectrolyte persistence length, $L_T$, substituting flexible sodium polystyrenesulfonate for natural semiflexible hyaluronan, we tuned the characteristic ratio $L_T$/R up to values of ≥1.85. Such ratios allow the successful formation of a new AuNPs arrangement with a high degree of short-range order at low ionic strength and of crystalline order when interactions are screened by addition of salt. This approach involving commercially available natural water-soluble semiflexible PELs, opens a low-cost and promising way for the one-step production of gold colloidal crystals, which can be of ubiquitous utility in nanophotonics. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a DORIS III |f DORIS Beamline A2 |1 EXP:(DE-H253)DORISIII-20150101 |0 EXP:(DE-H253)D-A2-20150101 |6 EXP:(DE-H253)D-A2-20150101 |x 0 |
700 | 1 | _ | |a Carn, Florent |0 P:(DE-H253)PIP1013950 |b 1 |e Corresponding author |
700 | 1 | _ | |a Boué, François |0 P:(DE-H253)PIP1013947 |b 2 |e Corresponding author |
700 | 1 | _ | |a Buhler, Eric |0 P:(DE-H253)PIP1013948 |b 3 |e Corresponding author |
773 | _ | _ | |a 10.1021/acsanm.3c00259 |g Vol. 6, no. 5, p. 3990 - 4004 |0 PERI:(DE-600)2916552-0 |n 5 |p 3990 - 4004 |t ACS applied nano materials |v 6 |y 2023 |x 2574-0970 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/580329/files/acsanm.3c00259.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/580329/files/acsanm.3c00259.pdf?subformat=pdfa |x pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:580329 |p VDB |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1013647 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1013950 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1013947 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1013948 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL NANO MATER : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-27 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL NANO MATER : 2022 |d 2023-10-27 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|