000580278 001__ 580278
000580278 005__ 20250715173522.0
000580278 0247_ $$2doi$$a10.1103/PhysRevD.107.L031504
000580278 0247_ $$2INSPIRETeX$$aStornati:2022jvm
000580278 0247_ $$2inspire$$ainspire:2131728
000580278 0247_ $$2ISSN$$a2470-0010
000580278 0247_ $$2ISSN$$a2470-0037
000580278 0247_ $$2ISSN$$a0556-2821
000580278 0247_ $$2ISSN$$a1089-4918
000580278 0247_ $$2ISSN$$a1538-4500
000580278 0247_ $$2ISSN$$a1550-2368
000580278 0247_ $$2ISSN$$a1550-7998
000580278 0247_ $$2ISSN$$a2470-0029
000580278 0247_ $$2arXiv$$aarXiv:2208.01964
000580278 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-01184
000580278 0247_ $$2altmetric$$aaltmetric:133620345
000580278 0247_ $$2WOS$$aWOS:000943018500003
000580278 0247_ $$2openalex$$aopenalex:W4321616007
000580278 037__ $$aPUBDB-2023-01184
000580278 041__ $$aEnglish
000580278 082__ $$a530
000580278 088__ $$2arXiv$$aarXiv:2208.01964
000580278 1001_ $$0P:(DE-HGF)0$$aStornati, Paolo$$b0$$eCorresponding author
000580278 245__ $$aCrystalline phases at finite winding densities in a quantum link ladder
000580278 260__ $$aWoodbury, NY$$bInst.$$c2023
000580278 3367_ $$2DRIVER$$aarticle
000580278 3367_ $$2DataCite$$aOutput Types/Journal article
000580278 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1713284092_2951526
000580278 3367_ $$2BibTeX$$aARTICLE
000580278 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000580278 3367_ $$00$$2EndNote$$aJournal Article
000580278 500__ $$a8 pages, 7 figures
000580278 520__ $$aCondensed matter physics of gauge theories coupled to fermions can exhibit a rich phase structure, but are nevertheless very difficult to study in Monte Carlo simulations when they are afflicted by a sign problem. As an alternate approach, we use tensor network methods to explore the finite density physics of Abelian gauge theories without dynamical matter. As a concrete example, we consider the U(1) gauge invariant quantum link ladder with spin-12 gauge fields in an external electric field, which causes the winding electric fluxes to condense in the ground state. We demonstrate how the electric flux tubes arrange themselves in the bulk, giving rise to crystalline patterns, whose period can be controlled by tuning the external field. We propose observables to detect the transitions in ground state properties not only in numerical experiments, but also in future cold-atom realizations. A systematic procedure for reaching the thermodynamic limit, as well as extending the studies from ladders to extended geometries is outlined.
000580278 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000580278 536__ $$0G:(EU-Grant)101029393$$aSTREDCH - Structured electric-dipole-based chirality (101029393)$$c101029393$$fH2020-MSCA-IF-2020$$x1
000580278 536__ $$0G:(GEPRIS)384950143$$aGRK 2433 - GRK 2433: Differentialgleichungs- und Daten-basierte Modelle in den Lebenswissenschaften und der Fluiddynamik (DAEDALUS) (384950143)$$c384950143$$x2
000580278 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000580278 650_7 $$2INSPIRE$$aflux tube: electric
000580278 650_7 $$2INSPIRE$$ainvariance: gauge
000580278 650_7 $$2INSPIRE$$agauge field theory: abelian
000580278 650_7 $$2INSPIRE$$adensity: finite
000580278 650_7 $$2INSPIRE$$anumerical calculations: Monte Carlo
000580278 650_7 $$2INSPIRE$$aground state
000580278 650_7 $$2INSPIRE$$aexternal field
000580278 650_7 $$2INSPIRE$$athermodynamical
000580278 650_7 $$2INSPIRE$$anetwork
000580278 650_7 $$2INSPIRE$$acrystal
000580278 650_7 $$2INSPIRE$$ageometry
000580278 650_7 $$2INSPIRE$$acondensed matter
000580278 650_7 $$2INSPIRE$$aU(1)
000580278 650_7 $$2INSPIRE$$aelectric field
000580278 650_7 $$2INSPIRE$$acritical phenomena
000580278 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000580278 7001_ $$aKrah, Philipp$$b1
000580278 7001_ $$0P:(DE-H253)PIP1003636$$aJansen, Karl$$b2$$udesy
000580278 7001_ $$aBanerjee, Debasish$$b3
000580278 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.107.L031504$$gVol. 107, no. 3, p. L031504$$n3$$pL031504$$tPhysical review / D$$v107$$x2470-0010$$y2023
000580278 7870_ $$0PUBDB-2022-05024$$aStornati, Paolo et.al.$$d2022$$iIsParent$$rarXiv:2208.01964$$tCrystalline phases at finite winding densities in a quantum link ladder
000580278 8564_ $$uhttps://bib-pubdb1.desy.de/record/580278/files/PRD107%282023%29L031504.pdf$$yOpenAccess
000580278 8564_ $$uhttps://bib-pubdb1.desy.de/record/580278/files/PRD107%282023%29L031504.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000580278 8767_ $$92023$$d2023-12-08$$eHybrid-OA$$jFlatrate$$lSCOAP3
000580278 909CO $$ooai:bib-pubdb1.desy.de:580278$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000580278 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000580278 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-HGF)0$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000580278 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003636$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000580278 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000580278 9141_ $$y2023
000580278 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-13
000580278 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-13
000580278 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000580278 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000580278 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-13
000580278 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000580278 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2022-11-13
000580278 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-02-05
000580278 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-02-05
000580278 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-02-05
000580278 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-02-05
000580278 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-02-05
000580278 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2022$$d2024-02-05
000580278 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-02-05
000580278 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2024-02-05
000580278 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV D : 2022$$d2024-02-05
000580278 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000580278 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000580278 9201_ $$0I:(DE-H253)CQTA-20221102$$kCQTA$$lCentre f. Quantum Techno. a. Application$$x0
000580278 980__ $$ajournal
000580278 980__ $$aVDB
000580278 980__ $$aI:(DE-H253)CQTA-20221102
000580278 980__ $$aAPC
000580278 980__ $$aUNRESTRICTED
000580278 9801_ $$aAPC
000580278 9801_ $$aFullTexts