SAN4Fuel

Single atom based nanohybrid photocatalyts for green fuels

Grant period2022-11-01 - 2025-10-31
Funding bodyEuropean Union
Call numberHORIZON-WIDERA-2021-ACCESS-03
Grant number101079384
IdentifierG:(EU-Grant)101079384

Note: The aim of this Twinning proposal entitled ‘Single Atom-Based Nanohybrid Photocatalysts for Green Fuels’ (SAN4Fuel) is to establish excellent collaborative research partnership that will link together two world-renowned research groups—Prof. Schmuki’s from the German Friedrich–Alexander University Erlangen (FAU) and Prof. Fornasiero’s from the Italian University of Trieste (UNITS)— with a research team from the Czech Palacky University Olomouc (UPOL), led by Dr. Kment, representing the Widening Country applicant, and another Czech outstanding group from VSB – Technical University of Ostrava (VSB), led by Prof. Zboril. Although the UPOL team has achieved a number of highly valuable scientific results, particularly in the field of hybrid nanostructures for photocatalysis, it still lags behind the most prestigious research teams in the area of sustainable and green energy. In this regard, it has been shown that incorporation of transition metals co-catalysts in the form of single atoms (SAa) into photocatalysts remarkably increases their activity. However, the UPOL teams lacks this necessary expertise, which represents one of the biggest breakthroughs in the field of CO2—free sustainable energy. By contrast, the FAU, UNITS, and VSB teams are considered leaders in the field of SA-based photocatalysts, exploiting semiconductors and carbon based materials. Moreover, VSB possesses the most powerful supercomputer in Europe, which will bring insight into the still unknown properties of SAs embedded in photoactive supports and the mechanistic phenomena related to two target reactions such as photocatalytic water splitting and CO2 reduction. FAU, UNITS and VSB’s expertise, infrastructure, knowledge, and best practice will be fully shared with UPOL to significantly enhance its scientific profile, attractiveness for other talented researchers, and competitiveness in the area of European grants.
   

Recent Publications

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Cation Vacancies in Ti‐Deficient TiO$_2$ Nanosheets Enable Highly Stable Trapping of Pt Single Atoms for Persistent Photocatalytic Hydrogen Evolution
Small 21(29), 2502428 () [10.1002/smll.202502428]  GO OpenAccess  Download fulltext Files  Download fulltextFulltext BibTeX | EndNote: XML, Text | RIS

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 


 Record created 2023-02-19, last modified 2023-02-19



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)