001     572871
005     20250724152219.0
024 7 _ |a 10.1103/PhysRevA.105.062404
|2 doi
024 7 _ |a Funcke:2020olv
|2 INSPIRETeX
024 7 _ |a inspire:1805462
|2 inspire
024 7 _ |a 2469-9926
|2 ISSN
024 7 _ |a 2469-9942
|2 ISSN
024 7 _ |a 0556-2791
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1538-4446
|2 ISSN
024 7 _ |a 2469-9934
|2 ISSN
024 7 _ |a arXiv:2007.03663
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2023-00777
|2 datacite_doi
024 7 _ |a altmetric:85396369
|2 altmetric
024 7 _ |a WOS:001133244600002
|2 WOS
024 7 _ |a openalex:W3041379827
|2 openalex
037 _ _ |a PUBDB-2023-00777
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2007.03663
|2 arXiv
088 _ _ |a HU-EP-20/15
|2 Other
088 _ _ |a DESY-20-147
|2 DESY
100 1 _ |a Funcke, Lena
|0 L.Funcke.1
|b 0
245 _ _ |a Measurement error mitigation in quantum computers through classical bit-flip correction
260 _ _ |a Woodbury, NY
|c 2022
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1676297852_29396
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN 2469-9934 not unique: **2 hits**.Phys. Rev. A 105, 062404 (2022). 27 pages, 11 figures, 4 tables, v3: updated to match journal version
520 _ _ |a We develop a classical bit-flip correction method to mitigate measurement errors on quantum computers. This method can be applied to any operator, any number of qubits, and any realistic bit-flip probability. We first demonstrate the successful performance of this method by correcting the noisy measurements of the ground-state energy of the longitudinal Ising model. We then generalize our results to arbitrary operators and test our method both numerically and experimentally on IBM quantum hardware. As a result, our correction method reduces the measurement error on the quantum hardware by up to one order of magnitude. We finally discuss how to preprocess the method and extend it to other error sources beyond measurement errors. For local Hamiltonians, the overhead costs are polynomial in the number of qubits, even if multiqubit correlations are included.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
650 _ 7 |a computer: quantum
|2 INSPIRE
650 _ 7 |a hardware
|2 INSPIRE
650 _ 7 |a performance
|2 INSPIRE
650 _ 7 |a Ising model
|2 INSPIRE
650 _ 7 |a qubit
|2 INSPIRE
650 _ 7 |a correction: error
|2 INSPIRE
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Hartung, Tobias
|b 1
700 1 _ |a Jansen, Karl
|0 P:(DE-H253)PIP1003636
|b 2
700 1 _ |a Kühn, Stefan
|b 3
700 1 _ |a Stornati, Paolo
|0 P:(DE-H253)PIP1083971
|b 4
|u desy
700 1 _ |a Wang, Xiaoyang
|0 Xiao.Yang.Wang.1
|b 5
773 _ _ |a 10.1103/PhysRevA.105.062404
|g Vol. 105, no. 6, p. 062404
|0 PERI:(DE-600)2844156-4
|n 6
|p 062404
|t Physical review / A
|v 105
|y 2022
|x 2469-9926
787 0 _ |a Funcke, Lena et.al.
|d 2020
|i IsParent
|0 PUBDB-2021-02146
|r arXiv:2007.03663 ; HU-EP-20/15 ; DESY-20-147
|t Measurement Error Mitigation in Quantum Computers Through Classical Bit-Flip Correction
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/572871/files/PRA105%282022%29062404.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/572871/files/PRA105%282022%29062404.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:572871
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1003636
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1083971
910 1 _ |a Istituto Nazionale di Fisica Nucleare
|0 I:(DE-588b)214094-9
|k INFN
|b 4
|6 P:(DE-H253)PIP1083971
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-23
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
920 1 _ |0 I:(DE-H253)ZEU-NIC-20120731
|k ZEU-NIC
|l NIC
|x 0
920 1 _ |0 I:(DE-H253)Z_ZPPT-20210408
|k Z_ZPPT
|l Zeuthen Particle PhysicsTheory
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)ZEU-NIC-20120731
980 _ _ |a I:(DE-H253)Z_ZPPT-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21