001     546331
005     20240110163654.0
024 7 _ |a 10.1016/j.bbrc.2020.12.069
|2 doi
024 7 _ |a 0006-291X
|2 ISSN
024 7 _ |a 1522-4732
|2 ISSN
024 7 _ |a 1090-2104
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2023-00645
|2 datacite_doi
024 7 _ |a altmetric:98606371
|2 altmetric
024 7 _ |a pmid:33421767
|2 pmid
024 7 _ |a WOS:000613422000007
|2 WOS
037 _ _ |a PUBDB-2023-00645
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Gierse, Robin M.
|0 P:(DE-H253)PIP1031760
|b 0
245 _ _ |a Identification of a 1-deoxy-D-xylulose-5-phosphate synthase (DXS) mutant with improved crystallographic properties
260 _ _ |a Orlando, Fla.
|c 2021
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1675692056_15722
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this report, we describe a truncated Deinococcus radiodurans 1-deoxy-D-xylulose-5-phosphate synthase (DXS) protein that retains enzymatic activity, while slowing protein degradation and showing improved crystallization properties. With modern drug-design approaches relying heavily on the elucidation of atomic interactions of potential new drugs with their targets, the need for co-crystal structures with the compounds of interest is high. DXS itself is a promising drug target, as it catalyzes the first reaction in the 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway for the biosynthesis of the universal precursors of terpenes, which are essential secondary metabolites. In contrast to many bacteria and pathogens, which employ the MEP pathway, mammals use the distinct mevalonate-pathway for the biosynthesis of these precursors, which makes all enzymes of the MEP-pathway potential new targets for the development of anti-infectives. However, crystallization of DXS has proven to be challenging: while the first X-ray structures from Escherichia coli and D. radiodurans were solved in 2004, since then only two additions have been made in 2019 that were obtained under anoxic conditions. The presented site of truncation can potentially also be transferred to other homologues, opening up the possibility for the determination of crystal structures from pathogenic species, which until now could not be crystallized. This manuscript also provides a further example that truncation of a variable region of a protein can lead to improved structural data.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P11
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P11-20150101
|6 EXP:(DE-H253)P-P11-20150101
|x 0
693 _ _ |a PETRA III
|f PETRA Beamline P13
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P13-20150101
|6 EXP:(DE-H253)P-P13-20150101
|x 1
700 1 _ |a Reddem, Eswar R.
|0 P:(DE-H253)PIP1017550
|b 1
700 1 _ |a Alhayek, Alaa
|b 2
700 1 _ |a Baitinger, Dominik
|b 3
700 1 _ |a Hamid, Zhoor
|0 0000-0001-9211-6286
|b 4
700 1 _ |a Jakobi, Harald
|b 5
700 1 _ |a Laber, Bernd
|0 0000-0003-2955-0746
|b 6
700 1 _ |a Lange, Gudrun
|b 7
700 1 _ |a Hirsch, Anna K. H.
|0 0000-0001-8734-4663
|b 8
|e Corresponding author
700 1 _ |a Groves, Matthew
|0 P:(DE-H253)PIP1003552
|b 9
|e Corresponding author
773 _ _ |a 10.1016/j.bbrc.2020.12.069
|g Vol. 539, p. 42 - 47
|0 PERI:(DE-600)1461396-7
|p 42 - 47
|t Biochemical and biophysical research communications
|v 539
|y 2021
|x 0006-291X
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/546331/files/1-s2.0-S0006291X20322452-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/546331/files/1-s2.0-S0006291X20322452-main.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:546331
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1031760
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 1
|6 P:(DE-H253)PIP1017550
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1017550
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1003552
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOCHEM BIOPH RES CO : 2021
|d 2022-11-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-23
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21