| 001 | 517359 | ||
| 005 | 20250724152219.0 | ||
| 024 | 7 | _ | |a 10.1002/anie.202114707 |2 doi |
| 024 | 7 | _ | |a 1433-7851 |2 ISSN |
| 024 | 7 | _ | |a 0570-0833 |2 ISSN |
| 024 | 7 | _ | |a 1521-3773 |2 ISSN |
| 024 | 7 | _ | |a 10.3204/PUBDB-2023-00412 |2 datacite_doi |
| 024 | 7 | _ | |a altmetric:121904460 |2 altmetric |
| 024 | 7 | _ | |a 35102658 |2 pmid |
| 024 | 7 | _ | |a WOS:000811747100039 |2 WOS |
| 024 | 7 | _ | |a openalex:W4210642282 |2 openalex |
| 037 | _ | _ | |a PUBDB-2023-00412 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Li, Changxia |0 0000-0001-8266-3649 |b 0 |
| 245 | _ | _ | |a Covalent Organic Framework (COF) Derived Ni‐N‐C Catalysts for Electrochemical CO$_2$ Reduction: Unraveling Fundamental Kinetic and Structural Parameters of the Active Sites |
| 260 | _ | _ | |a Weinheim |c 2022 |b Wiley-VCH |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1727082923_1474078 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Electrochemical CO$_2$ reduction is a potential approach to convert CO$_2$ into valuable chemicals using electricity as feedstock. Abundant and affordable catalyst materials are needed to upscale this process in a sustainable manner. Nickel-nitrogen-doped carbon (Ni-N-C) is an efficient catalyst for CO$_2$ reduction to CO, and the single-site Ni−Nx motif is believed to be the active site. However, critical metrics for its catalytic activity, such as active site density and intrinsic turnover frequency, so far lack systematic discussion. In this work, we prepared a set of covalent organic framework (COF)-derived Ni-N-C catalysts, for which the Ni−Nx content could be adjusted by the pyrolysis temperature. The combination of high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure evidenced the presence of Ni single-sites, and quantitative X-ray photoemission addressed the relation between active site density and turnover frequency. |
| 536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project 390540038 - EXC 2008: Unifying Systems in Catalysis "UniSysCat" (390540038) |0 G:(GEPRIS)390540038 |c 390540038 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |a PETRA III |f PETRA Beamline P64 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P64-20150101 |6 EXP:(DE-H253)P-P64-20150101 |x 0 |
| 700 | 1 | _ | |a Ju, Wen |0 P:(DE-H253)PIP1092297 |b 1 |e Corresponding author |
| 700 | 1 | _ | |a Vijay, Sudarshan |0 0000-0001-8242-0161 |b 2 |
| 700 | 1 | _ | |a Timoshenko, Janis |0 P:(DE-H253)PIP1011123 |b 3 |
| 700 | 1 | _ | |a Mou, Kaiwen |b 4 |
| 700 | 1 | _ | |a Cullen, David A. |b 5 |
| 700 | 1 | _ | |a Yang, Jin |b 6 |
| 700 | 1 | _ | |a Wang, Xingli |b 7 |
| 700 | 1 | _ | |a Pachfule, Pradip |b 8 |
| 700 | 1 | _ | |a Brückner, Sven |0 P:(DE-H253)PIP1092698 |b 9 |
| 700 | 1 | _ | |a Jeon, Hyo Sang |0 P:(DE-H253)PIP1031960 |b 10 |
| 700 | 1 | _ | |a Haase, Felix T. |0 P:(DE-H253)PIP1093463 |b 11 |
| 700 | 1 | _ | |a Tsang, Sze-Chun |0 0000-0002-8033-0485 |b 12 |
| 700 | 1 | _ | |a Rettenmaier, Clara |0 P:(DE-H253)PIP1084792 |b 13 |
| 700 | 1 | _ | |a Chan, Karen |0 0000-0002-6897-1108 |b 14 |
| 700 | 1 | _ | |a Cuenya, Beatriz Roldan |0 0000-0002-8025-307X |b 15 |
| 700 | 1 | _ | |a Thomas, Arne |0 0000-0002-2130-4930 |b 16 |e Corresponding author |
| 700 | 1 | _ | |a Strasser, Peter |0 P:(DE-H253)PIP1016552 |b 17 |e Corresponding author |
| 773 | _ | _ | |a 10.1002/anie.202114707 |g Vol. 61, no. 15 |0 PERI:(DE-600)2011836-3 |n 15 |p e202114707 |t Angewandte Chemie / International edition |v 61 |y 2022 |x 1433-7851 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/517359/files/Angew%20Chem%20Int%20Ed%20-%202022%20-%20Li%20-%20Covalent%20Organic%20Framework%20COF%20Derived%20Ni%E2%80%90N%E2%80%90C%20Catalysts%20for%20Electrochemical%20CO2%20Reduction.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/517359/files/Angew%20Chem%20Int%20Ed%20-%202022%20-%20Li%20-%20Covalent%20Organic%20Framework%20COF%20Derived%20Ni%E2%80%90N%E2%80%90C%20Catalysts%20for%20Electrochemical%20CO2%20Reduction.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:517359 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1092297 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1011123 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1092698 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-H253)PIP1031960 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 11 |6 P:(DE-H253)PIP1093463 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 13 |6 P:(DE-H253)PIP1084792 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 17 |6 P:(DE-H253)PIP1016552 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-11 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-11 |
| 915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b ANGEW CHEM INT EDIT : 2021 |d 2022-11-11 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ANGEW CHEM INT EDIT : 2021 |d 2022-11-11 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2022-11-11 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-11 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
| 920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|