001     491621
005     20250715180013.0
024 7 _ |a 10.1063/4.0000161
|2 doi
024 7 _ |a 10.3204/PUBDB-2023-00313
|2 datacite_doi
024 7 _ |a altmetric:137351029
|2 altmetric
024 7 _ |a pmid:36276194
|2 pmid
024 7 _ |a WOS:000870543600002
|2 WOS
024 7 _ |2 openalex
|a openalex:W4306655160
037 _ _ |a PUBDB-2023-00313
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a CHITTURI, SATHYA
|0 P:(DE-H253)PIP1100979
|b 0
|e Corresponding author
245 _ _ |a A machine learning photon detection algorithm for coherent x-ray ultrafast fluctuation analysis
260 _ _ |a Melville, NY
|c 2022
|b AIP Publishing LLC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674034712_6618
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a X-ray free electron laser experiments have brought unique capabilities and opened new directions in research, such as creating new states of matter or directly measuring atomic motion. One such area is the ability to use finely spaced sets of coherent x-ray pulses to be compared after scattering from a dynamic system at different times. This enables the study of fluctuations in many-body quantum systems at the level of the ultrafast pulse durations, but this method has been limited to a select number of examples and required complex and advanced analytical tools. By applying a new methodology to this problem, we have made qualitative advances in three separate areas that will likely also find application to new fields. As compared to the “droplet-type” models, which typically are used to estimate the photon distributions on pixelated detectors to obtain the coherent x-ray speckle patterns, our algorithm achieves an order of magnitude speedup on CPU hardware and two orders of magnitude improvement on GPU hardware. We also find that it retains accuracy in low-contrast conditions, which is the typical regime for many experiments in structural dynamics. Finally, it can predict photon distributions in high average-intensity applications, a regime which up until now has not been accessible. Our artificial intelligence-assisted algorithm will enable a wider adoption of x-ray coherence spectroscopies, by both automating previously challenging analyses and enabling new experiments that were not otherwise feasible without the developments described in this work.
536 _ _ |a 623 - Data Management and Analysis (POF4-623)
|0 G:(DE-HGF)POF4-623
|c POF4-623
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Burdet, Nicolas G.
|0 P:(DE-H253)PIP1091880
|b 1
700 1 _ |a Nashed, Youssef
|0 0000-0001-6146-3939
|b 2
700 1 _ |a Ratner, Daniel
|0 P:(DE-H253)PIP1017253
|b 3
700 1 _ |a Mishra, Aashwin
|b 4
700 1 _ |a Lane, Thomas
|0 P:(DE-H253)PIP1020283
|b 5
700 1 _ |a Seaberg, Matthew
|0 0000-0002-4560-4698
|b 6
700 1 _ |a Esposito, Vincent
|0 P:(DE-H253)PIP1090475
|b 7
700 1 _ |a Yoon, Chun Hong
|b 8
700 1 _ |a Dunne, Mike
|0 0000-0002-4978-5166
|b 9
700 1 _ |a Turner, Joshua J.
|0 P:(DE-H253)PIP1090614
|b 10
773 _ _ |a 10.1063/4.0000161
|g Vol. 9, no. 5, p. 054302 -
|0 PERI:(DE-600)2758684-4
|n 5
|p 054302
|t Structural dynamics
|v 9
|y 2022
|x 2329-7778
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/491621/files/4.0000161.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/491621/files/4.0000161.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:491621
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1100979
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1100979
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1091880
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1091880
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1017253
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1020283
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 5
|6 P:(DE-H253)PIP1020283
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 7
|6 P:(DE-H253)PIP1090475
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1090475
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 10
|6 P:(DE-H253)PIP1090614
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1090614
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and Technologies
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-623
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Data Management and Analysis
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2018-07-26T13:37:32Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2018-07-26T13:37:32Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2018-07-26T13:37:32Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
920 1 _ |0 I:(DE-H253)FS-CFEL-1-PBIO-20210408
|k FS-CFEL-1-PBIO
|l FS-CFEL-1 Fachgruppe PBIO
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-CFEL-1-PBIO-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21