000491621 001__ 491621
000491621 005__ 20250715180013.0
000491621 0247_ $$2doi$$a10.1063/4.0000161
000491621 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-00313
000491621 0247_ $$2altmetric$$aaltmetric:137351029
000491621 0247_ $$2pmid$$apmid:36276194
000491621 0247_ $$2WOS$$aWOS:000870543600002
000491621 0247_ $$2openalex$$aopenalex:W4306655160
000491621 037__ $$aPUBDB-2023-00313
000491621 041__ $$aEnglish
000491621 082__ $$a500
000491621 1001_ $$0P:(DE-H253)PIP1100979$$aCHITTURI, SATHYA$$b0$$eCorresponding author
000491621 245__ $$aA machine learning photon detection algorithm for coherent x-ray ultrafast fluctuation analysis
000491621 260__ $$aMelville, NY$$bAIP Publishing LLC$$c2022
000491621 3367_ $$2DRIVER$$aarticle
000491621 3367_ $$2DataCite$$aOutput Types/Journal article
000491621 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674034712_6618
000491621 3367_ $$2BibTeX$$aARTICLE
000491621 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000491621 3367_ $$00$$2EndNote$$aJournal Article
000491621 520__ $$aX-ray free electron laser experiments have brought unique capabilities and opened new directions in research, such as creating new states of matter or directly measuring atomic motion. One such area is the ability to use finely spaced sets of coherent x-ray pulses to be compared after scattering from a dynamic system at different times. This enables the study of fluctuations in many-body quantum systems at the level of the ultrafast pulse durations, but this method has been limited to a select number of examples and required complex and advanced analytical tools. By applying a new methodology to this problem, we have made qualitative advances in three separate areas that will likely also find application to new fields. As compared to the “droplet-type” models, which typically are used to estimate the photon distributions on pixelated detectors to obtain the coherent x-ray speckle patterns, our algorithm achieves an order of magnitude speedup on CPU hardware and two orders of magnitude improvement on GPU hardware. We also find that it retains accuracy in low-contrast conditions, which is the typical regime for many experiments in structural dynamics. Finally, it can predict photon distributions in high average-intensity applications, a regime which up until now has not been accessible. Our artificial intelligence-assisted algorithm will enable a wider adoption of x-ray coherence spectroscopies, by both automating previously challenging analyses and enabling new experiments that were not otherwise feasible without the developments described in this work.
000491621 536__ $$0G:(DE-HGF)POF4-623$$a623 - Data Management and Analysis (POF4-623)$$cPOF4-623$$fPOF IV$$x0
000491621 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000491621 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0
000491621 7001_ $$0P:(DE-H253)PIP1091880$$aBurdet, Nicolas G.$$b1
000491621 7001_ $$00000-0001-6146-3939$$aNashed, Youssef$$b2
000491621 7001_ $$0P:(DE-H253)PIP1017253$$aRatner, Daniel$$b3
000491621 7001_ $$aMishra, Aashwin$$b4
000491621 7001_ $$0P:(DE-H253)PIP1020283$$aLane, Thomas$$b5
000491621 7001_ $$00000-0002-4560-4698$$aSeaberg, Matthew$$b6
000491621 7001_ $$0P:(DE-H253)PIP1090475$$aEsposito, Vincent$$b7
000491621 7001_ $$aYoon, Chun Hong$$b8
000491621 7001_ $$00000-0002-4978-5166$$aDunne, Mike$$b9
000491621 7001_ $$0P:(DE-H253)PIP1090614$$aTurner, Joshua J.$$b10
000491621 773__ $$0PERI:(DE-600)2758684-4$$a10.1063/4.0000161$$gVol. 9, no. 5, p. 054302 -$$n5$$p054302 $$tStructural dynamics$$v9$$x2329-7778$$y2022
000491621 8564_ $$uhttps://bib-pubdb1.desy.de/record/491621/files/4.0000161.pdf$$yOpenAccess
000491621 8564_ $$uhttps://bib-pubdb1.desy.de/record/491621/files/4.0000161.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000491621 909CO $$ooai:bib-pubdb1.desy.de:491621$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000491621 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100979$$aExternal Institute$$b0$$kExtern
000491621 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1100979$$aEuropean XFEL$$b0$$kXFEL.EU
000491621 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1091880$$aExternal Institute$$b1$$kExtern
000491621 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1091880$$aEuropean XFEL$$b1$$kXFEL.EU
000491621 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017253$$aExternal Institute$$b3$$kExtern
000491621 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1020283$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000491621 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1020283$$aCentre for Free-Electron Laser Science$$b5$$kCFEL
000491621 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1090475$$aEuropean XFEL$$b7$$kXFEL.EU
000491621 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090475$$aExternal Institute$$b7$$kExtern
000491621 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1090614$$aEuropean XFEL$$b10$$kXFEL.EU
000491621 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090614$$aExternal Institute$$b10$$kExtern
000491621 9131_ $$0G:(DE-HGF)POF4-623$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and Technologies$$vData Management and Analysis$$x0
000491621 9141_ $$y2022
000491621 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000491621 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-23
000491621 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000491621 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-23
000491621 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2018-07-26T13:37:32Z
000491621 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2018-07-26T13:37:32Z
000491621 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-23
000491621 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-23
000491621 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000491621 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000491621 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2018-07-26T13:37:32Z
000491621 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-23
000491621 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000491621 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000491621 9201_ $$0I:(DE-H253)FS-CFEL-1-PBIO-20210408$$kFS-CFEL-1-PBIO$$lFS-CFEL-1 Fachgruppe PBIO$$x0
000491621 980__ $$ajournal
000491621 980__ $$aVDB
000491621 980__ $$aUNRESTRICTED
000491621 980__ $$aI:(DE-H253)FS-CFEL-1-PBIO-20210408
000491621 9801_ $$aFullTexts