000491586 001__ 491586
000491586 005__ 20250724152211.0
000491586 0247_ $$2doi$$a10.2351/7.0000735
000491586 0247_ $$2ISSN$$a1042-346X
000491586 0247_ $$2ISSN$$a1938-1387
000491586 0247_ $$2WOS$$aWOS:000875382300002
000491586 0247_ $$2altmetric$$aaltmetric:155246842
000491586 0247_ $$2openalex$$aopenalex:W4303415876
000491586 037__ $$aPUBDB-2023-00278
000491586 041__ $$aEnglish
000491586 082__ $$a530
000491586 1001_ $$aMöller, Mauritz$$b0
000491586 245__ $$aSpatially tailored laser energy distribution using innovative optics for gas-tight welding of casted and wrought aluminum alloys in e-mobility
000491586 260__ $$aOrlando, Fla.$$bLaser Inst. of America$$c2022
000491586 3367_ $$2DRIVER$$aarticle
000491586 3367_ $$2DataCite$$aOutput Types/Journal article
000491586 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674123775_9871
000491586 3367_ $$2BibTeX$$aARTICLE
000491586 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000491586 3367_ $$00$$2EndNote$$aJournal Article
000491586 520__ $$aElectric mobility is undergoing a very rapid maturation process [A. Kampker, K. Kreisköther, P. Treichel, T. Möller, Y. Boelsen, and D. Neb, “Electromobility trends and challenges of future mass production,” in Handbook Industry 4.0, edited by W. Frenz (Springer, Berlin, 2022), D. Ziegler and N. Abdelkafi, “Business models for electric vehicles: Literature review and key insights,” J. Cleaner Prod. 330, 129803 (2022)]. While conventional vehicle design disciplines such as car body design are established, electromobility-specific disciplines are in the technological orientation and ramp-up phase. In particular, the demand for components like batteries, e-motors, and power electronics is growing continuously [A. Kampker, K. Kreisköther, P. Treichel, T. Möller, Y. Boelsen, and D. Neb, “Electromobility trends and challenges of future mass production,” in Handbook Industry 4.0, edited by W. Frenz (Springer, Berlin, 2022), D. Ziegler and N. Abdelkafi, “Business models for electric vehicles: Literature review and key insights,” J. Cleaner Prod. 330, 129803 (2022)]. One of the major materials chosen for these parts is aluminum alloys [C. Prieto, E. Vaamonde, D. Diego-Vallejo, J. Jimenez, B. Urbach, Y. Vidne, and E. Shekel, “Dynamic laser beam shaping for laser aluminium welding in e-mobility applications,” Procedia CIRP. 94, 596–600 (2020)]. Next to the material-specific challenges and mentioned requirements, the focus is on the gas-tight welding of aluminum alloys for parts like casted power electronics housings and heat exchangers made of sheet metal or extrusion profiles. Gas-tightness is a requirement, on the one hand, to shield electronic components from the influence of the surrounding environment and, on the other hand, to prevent leakage of the water-cooling circuit [C. Prieto, E. Vaamonde, D. Diego-Vallejo, J. Jimenez, B. Urbach, Y. Vidne, and E. Shekel, “Dynamic laser beam shaping for laser aluminium welding in e-mobility applications,” Procedia CIRP. 94, 596–600 (2020), A. Artinov, M. Bachmann, X. Meng, V. Karkhin, and M. Rethmeier, “On the relationship between the bulge effect and the hot cracking formation during deep penetration laser beam welding,” Procedia CIRP 94, 5–10 (2020)]. This paper offers insight into the requirements of these parts and an innovative optics approach with a novel MultiFocus solution. Material-specific challenges (e. g. porosity), especially, for helium-tight welding of aluminum casted housings with forging alloys are characterized. This analysis is conducted using gas-tightness measurements, CT-scans, micrographs, and high-speed recordings in order to elaborate on the fundamental laser-material-process interdependencies and the correlation between the process and resulting quality, in terms of tightness. Furthermore, high-speed synchrotron recordings are conducted at the DESY and based on that, a detailed evaluation of laser and material interaction is conducted. This allows an explanation of the interactions for the prevention of pore formation in aluminum alloys and, thus, the characterization of the boundary conditions for a reliable process of gas-tight welding on aluminum alloys [C. Prieto, E. Vaamonde, D. Diego-Vallejo, J. Jimenez, B. Urbach, Y. Vidne, and E. Shekel, “Dynamic laser beam shaping for laser aluminium welding in e-mobility applications,” Procedia CIRP. 94, 596–600 (2020)]. 
000491586 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000491586 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000491586 693__ $$0EXP:(DE-H253)P-P07-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P07-20150101$$aPETRA III$$fPETRA Beamline P07$$x0
000491586 7001_ $$aHaug, Patrick$$b1
000491586 7001_ $$aScheible, Philipp$$b2
000491586 7001_ $$aBuse, Christian$$b3
000491586 7001_ $$aFrischkorn, Conrad$$b4
000491586 7001_ $$aSpeker, Nicolai$$b5
000491586 773__ $$0PERI:(DE-600)2084611-3$$a10.2351/7.0000735$$gVol. 34, no. 4, p. 042015 -$$n4$$p042015 $$tJournal of laser applications$$v34$$x1042-346X$$y2022
000491586 8564_ $$uhttps://bib-pubdb1.desy.de/record/491586/files/7.0000735.pdf$$yRestricted
000491586 8564_ $$uhttps://bib-pubdb1.desy.de/record/491586/files/7.0000735.pdf?subformat=pdfa$$xpdfa$$yRestricted
000491586 909CO $$ooai:bib-pubdb1.desy.de:491586$$pVDB
000491586 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000491586 9141_ $$y2022
000491586 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-23$$wger
000491586 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ LASER APPL : 2021$$d2022-11-23
000491586 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000491586 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000491586 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000491586 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-23
000491586 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-23
000491586 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-23
000491586 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000491586 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-23
000491586 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-23
000491586 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000491586 980__ $$ajournal
000491586 980__ $$aVDB
000491586 980__ $$aI:(DE-H253)HAS-User-20120731
000491586 980__ $$aUNRESTRICTED