001     491380
005     20250730144217.0
024 7 _ |a 10.1103/PhysRevAccelBeams.27.050701
|2 doi
024 7 _ |a 10.3204/PUBDB-2023-00118
|2 datacite_doi
024 7 _ |a WOS:001231085700001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4396978283
037 _ _ |a PUBDB-2023-00118
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Grech, Christian
|0 P:(DE-H253)PIP1095777
|b 0
|e Corresponding author
245 _ _ |a Crystal-based absolute photon energy calibration methods for hard x-ray free-electron lasers
260 _ _ |a College Park, MD
|c 2024
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1716462756_516480
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Bragg diffraction from crystals is widely used to select a very narrow spectral range of x-ray pulses. The diffracted signal can be used to calibrate the photon energy, a fact that can be exploited very effectively at x-ray free-electron lasers (XFELs). This work describes three crystal-based methods used to this goal at a major x-ray FEL facility, the European XFEL. These methods, which have a wide applicability, have been developed in relation to the hard x-ray self-seeding setup installed at the SASE2 undulator. They are fast and straightforward to implement since they are based on techniques for extracting and identifying crystal reflections from standard diagnostic raw data while still delivering few electronvolts resolution.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a 6G13 - Accelerator of European XFEL (POF4-6G13)
|0 G:(DE-HGF)POF4-6G13
|c POF4-6G13
|f POF IV
|x 1
542 _ _ |i 2024-05-16
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a XFEL
|e Experiments at XFEL
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL-Exp-20150101
|5 EXP:(DE-H253)XFEL-Exp-20150101
|x 0
693 _ _ |a XFEL
|e Facility (machine) XFEL
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL(machine)-20150101
|5 EXP:(DE-H253)XFEL(machine)-20150101
|x 1
700 1 _ |a Guetg, Marc
|0 P:(DE-H253)PIP1080263
|b 1
|u desy
700 1 _ |a Geloni, Gianluca
|0 P:(DE-H253)PIP1000427
|b 2
700 1 _ |a Boesenberg, Ulrike
|0 P:(DE-H253)PIP1008487
|b 3
700 1 _ |a Kujala, Naresh
|0 P:(DE-H253)PIP1023733
|b 4
700 1 _ |a Makita, Mikako
|0 P:(DE-H253)PIP1013650
|b 5
700 1 _ |a Serkez, Svitozar
|0 P:(DE-H253)PIP1012664
|b 6
773 1 8 |a 10.1103/physrevaccelbeams.27.050701
|b American Physical Society (APS)
|d 2024-05-16
|n 5
|p 050701
|3 journal-article
|2 Crossref
|t Physical Review Accelerators and Beams
|v 27
|y 2024
|x 2469-9888
773 _ _ |a 10.1103/PhysRevAccelBeams.27.050701
|g Vol. 27, no. 5, p. 050701
|0 PERI:(DE-600)2844143-6
|n 5
|p 050701
|t Physical review accelerators and beams
|v 27
|y 2024
|x 2469-9888
856 4 _ |u https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.27.050701
856 4 _ |u https://bib-pubdb1.desy.de/record/491380/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/491380/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/491380/files/document.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/491380/files/Manuscript.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/491380/files/document.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/491380/files/Manuscript.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:491380
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1095777
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1080263
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1080263
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1000427
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1008487
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1023733
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1013650
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 6
|6 P:(DE-H253)PIP1012664
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G13
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator of European XFEL
|x 1
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-14T15:01:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-14T15:01:02Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-10-14T15:01:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV ACCEL BEAMS : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-28
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
920 1 _ |0 I:(DE-H253)MXL-20160301
|k MXL
|l Koordination des XFEL-Beschleunigers
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MXL-20160301
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.7566/JPSJ.82.021016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41586-023-06491-w
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1135080
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 G. Geloni
|y 1929
|2 Crossref
|o G. Geloni 1929
999 C 5 |a 10.1063/1.1140826
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S1600577521012352
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S0365110X60001941
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S1600577520014526
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/09500340.2011.586473
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 G. Geloni
|y 2016
|2 Crossref
|t Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications
|o G. Geloni Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications 2016
999 C 5 |a 10.1038/s41566-020-0607-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41566-023-01305-x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphoton.2012.180
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41566-021-00777-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1364/OE.473593
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.5084579
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 A. Koch
|y 2015
|2 Crossref
|t Advances in X-ray Free-Electron Lasers Instrumentation III
|o A. Koch Advances in X-ray Free-Electron Lasers Instrumentation III 2015
999 C 5 |a 10.1063/5.0019935
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41598-020-77474-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S1600576719008665
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S2052252521011258
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1109/83.366472
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1145/361237.361242
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 T. Bräunl
|y 2001
|2 Crossref
|t Parallel Image Processing
|o T. Bräunl Parallel Image Processing 2001
999 C 5 |a 10.1107/S1600577521001302
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S1600577519005174
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1006/adnd.1993.1013
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 C. Grech
|y 2023
|2 Crossref
|t X-Ray Free-Electron Lasers: Advances in Source Development and Instrumentation VI
|o C. Grech X-Ray Free-Electron Lasers: Advances in Source Development and Instrumentation VI 2023


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21