001     491347
005     20250724131728.0
024 7 _ |a 10.3390/met13010135
|2 doi
024 7 _ |a 10.3204/PUBDB-2023-00102
|2 datacite_doi
024 7 _ |a WOS:000918947900001
|2 WOS
024 7 _ |a openalex:W4313898257
|2 openalex
037 _ _ |a PUBDB-2023-00102
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Kaufmann, Florian
|0 P:(DE-H253)PIP1100029
|b 0
|e Corresponding author
245 _ _ |a Characterization of Vapor Capillary Geometry in Laser Beam Welding of Copper with 515 nm and 1030 nm Laser Beam Sources by Means of In Situ Synchrotron X-ray Imaging
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1689333732_4161198
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Laser welding of copper is being used with increasing demand for contacting applications in electric components such as batteries, power electronics, and electric drives. With its local, non-contact energy input and high automation capability enabling reproducible weld quality, this joining technology represents a key enabler of future mobility systems. However, a major challenge in process design is the combination of energy efficiency and precise process guidance in terms of weld seam depth and defect prevention (i.e., spatter and melt ejections) due to the high electrical and thermal conductivity of copper. High-power lasers in the near infrared wavelength range (𝜆 ≈ 1 μm) and excellent beam quality provide an established joining solution for this purpose; nevertheless, the low absorptivity (≤5%) advocates novel beam sources at visible wavelengths due to altered absorptivity (40% at 515 nm) characteristics as an improved tool. In order to understand the influence of laser wavelength and process parameters on the vapor capillary geometry, in situ synchrotron investigations on Cu-ETP with 515 nm and 1030 nm laser sources with the same spot diameter are compared. The material phase contrast analysis was successfully used to distinguish keyhole and melt pool phase boundaries during the welding process. A significantly different sensitivity of the keyhole depth in relation to the feed rate was found, which is increased for the infrared laser. This behavior could be attributed to the increased effect of multiple reflections at 1030 nm.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20191140 (I-20191140)
|0 G:(DE-H253)I-20191140
|c I-20191140
|x 1
536 _ _ |a SFB 1120 A01 - Steuerung von Geometrie und Metallurgie beim Laserstrahl-Mikroschweißen durch Beeinflussung der Schmelzbaddynamik über örtlich und zeitlich angepassten Energieeintrag (A01) (260036706)
|0 G:(GEPRIS)260036706
|c 260036706
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P07
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P07-20150101
|6 EXP:(DE-H253)P-P07-20150101
|x 0
700 1 _ |a Forster, Carola
|b 1
700 1 _ |a Hummel, Marc
|b 2
700 1 _ |a Olowinsky, Alexander
|b 3
700 1 _ |a Beckmann, Felix
|0 P:(DE-H253)PIP1002967
|b 4
700 1 _ |a Moosmann, Julian
|0 P:(DE-H253)PIP1030371
|b 5
700 1 _ |a Roth, Stephan
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schmidt, Michael
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.3390/met13010135
|g Vol. 13, no. 1, p. 135 -
|0 PERI:(DE-600)2662252-X
|n 1
|p 135
|t Metals
|v 13
|y 2023
|x 2075-4701
856 4 _ |u https://bib-pubdb1.desy.de/record/491347/files/Kaufmann2023_metals-13-00135.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/491347/files/Kaufmann2023_metals-13-00135.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:491347
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1100029
910 1 _ |a Helmholtz-Zentrum Geesthacht
|0 I:(DE-588b)16087541-9
|k HZG
|b 4
|6 P:(DE-H253)PIP1002967
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1002967
910 1 _ |a Helmholtz-Zentrum Geesthacht
|0 I:(DE-588b)16087541-9
|k HZG
|b 5
|6 P:(DE-H253)PIP1030371
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1030371
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-07-28T15:34:10Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-07-28T15:34:10Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-07-28T15:34:10Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b METALS-BASEL : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)Hereon-20210428
|k Hereon
|l Helmholtz-Zentrum Hereon
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)Hereon-20210428
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21