Home > Publications database > Reconstructing partonic kinematics at colliders with Machine Learning > print |
001 | 491187 | ||
005 | 20250720040757.0 | ||
024 | 7 | _ | |a 10.21468/SciPostPhysCore.5.4.049 |2 doi |
024 | 7 | _ | |a Renteria-Estrada:2021zrd |2 INSPIRETeX |
024 | 7 | _ | |a inspire:1986754 |2 inspire |
024 | 7 | _ | |a arXiv:2112.05043 |2 arXiv |
024 | 7 | _ | |a 10.3204/PUBDB-2023-00044 |2 datacite_doi |
024 | 7 | _ | |a WOS:000929724800001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4307715662 |
024 | 7 | _ | |a altmetric:118549458 |2 altmetric |
037 | _ | _ | |a PUBDB-2023-00044 |
041 | _ | _ | |a English |
088 | _ | _ | |a arXiv:2112.05043 |2 arXiv |
088 | _ | _ | |a DESY-21-211 |2 DESY |
100 | 1 | _ | |a Rentería-Estrada, David F. |0 D.F.RenteriaEstrada.1 |b 0 |e Corresponding author |
245 | _ | _ | |a Reconstructing partonic kinematics at colliders with Machine Learning |
260 | _ | _ | |a Amsterdam |c 2022 |b SciPost Foundation |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1673879775_17090 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a SciPost Phys. Core 5, 049 (2022). 37 pages + appendices, 16 figures, 7 tables |
520 | _ | _ | |a In the context of high-energy physics, a reliable description of the parton-level kinematics plays a crucial role for understanding the internal structure of hadrons and improving the precision of the calculations. Here, we study the production of one hadron and a direct photon, including up to Next-to-Leading Order Quantum Chromodynamics and Leading-Order Quantum Electrodynamics corrections. Using a code based on Monte-Carlo integration, we simulate the collisions and analyze the events to determine the correlations among measurable and partonic quantities. Then, we use these results to feed three different Machine Learning algorithms that allow us to find the momentum fractions of the partons involved in the process, in terms of suitable combinations of the final state momenta. Our results are compatible with previous findings and suggest a powerful application of Machine-Learning to model high-energy collisions at the partonic-level with high-precision. |
536 | _ | _ | |a 611 - Fundamental Particles and Forces (POF4-611) |0 G:(DE-HGF)POF4-611 |c POF4-611 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de |
650 | _ | 7 | |a p p: scattering |2 INSPIRE |
650 | _ | 7 | |a quantum electrodynamics: correction |2 INSPIRE |
650 | _ | 7 | |a hadron: structure |2 INSPIRE |
650 | _ | 7 | |a photon: direct production |2 INSPIRE |
650 | _ | 7 | |a hadron: production |2 INSPIRE |
650 | _ | 7 | |a higher-order: 1 |2 INSPIRE |
650 | _ | 7 | |a higher-order: 0 |2 INSPIRE |
650 | _ | 7 | |a kinematics |2 INSPIRE |
650 | _ | 7 | |a correlation |2 INSPIRE |
650 | _ | 7 | |a Monte Carlo |2 INSPIRE |
650 | _ | 7 | |a parton: scattering |2 INSPIRE |
650 | _ | 7 | |a quantum chromodynamics: correction |2 INSPIRE |
650 | _ | 7 | |a hard scattering |2 INSPIRE |
650 | _ | 7 | |a computer |2 INSPIRE |
650 | _ | 7 | |a data analysis method |2 INSPIRE |
650 | _ | 7 | |a factorization: collinear |2 INSPIRE |
650 | _ | 7 | |a parton: distribution function |2 INSPIRE |
650 | _ | 7 | |a transverse momentum: momentum spectrum |2 INSPIRE |
650 | _ | 7 | |a momentum |2 INSPIRE |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Hernández-Pinto, Roger J. |0 R.J.Hernandez.Pinto.1 |b 1 |
700 | 1 | _ | |a Sborlini, German F. R. |0 P:(DE-H253)PIP1094299 |b 2 |
700 | 1 | _ | |a Zurita, Pia |0 M.P.Zurita.1 |b 3 |
773 | _ | _ | |a 10.21468/SciPostPhysCore.5.4.049 |g Vol. 5, no. 4, p. 049 |0 PERI:(DE-600)3071450-3 |n 4 |p 049 |t SciPost Physics Core |v 5 |y 2022 |x 2666-9366 |
787 | 0 | _ | |a Rentería-Estrada, David F. et.al. |d 2021 |i IsParent |0 PUBDB-2021-05010 |r DESY-21-211 ; arXiv:2112.05043 |t Reconstructing partonic kinematics at colliders with Machine Learning |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/491187/files/SciPostPhysCore5%282022%29049.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/491187/files/SciPostPhysCore5%282022%29049.pdf?subformat=pdfa |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/491187/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/491187/files/PDF-Approval_of_scientific_publication.pdf?subformat=pdfa |x pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:491187 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1094299 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and the Universe |1 G:(DE-HGF)POF4-610 |0 G:(DE-HGF)POF4-611 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Fundamental Particles and Forces |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-23 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-04-30T11:42:11Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-04-30T11:42:11Z |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Open peer review |d 2020-04-30T11:42:11Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-23 |
920 | 1 | _ | |0 I:(DE-H253)ZEU-THEO-20120731 |k ZEU-THEO |l Theorie |x 0 |
920 | 1 | _ | |0 I:(DE-H253)Z_ZPPT-20210408 |k Z_ZPPT |l Zeuthen Particle PhysicsTheory |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)ZEU-THEO-20120731 |
980 | _ | _ | |a I:(DE-H253)Z_ZPPT-20210408 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|