000490845 001__ 490845
000490845 005__ 20250724152159.0
000490845 0247_ $$2doi$$a10.2139/ssrn.4163387
000490845 0247_ $$2openalex$$aopenalex:W4285684563
000490845 037__ $$aPUBDB-2022-08066
000490845 041__ $$aEnglish
000490845 082__ $$a330
000490845 1001_ $$0P:(DE-H253)PIP1081283$$aHeinze, Stefan$$b0$$eCorresponding author
000490845 245__ $$aInfluence of the Deposition Process and Substrate on Microstructure, Phase Composition, and Residual Stress State on As-Deposited Cr-Al-C Coatings
000490845 260__ $$bSocial Science Electronic Publ.$$c2022
000490845 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1674654542_7296
000490845 3367_ $$2ORCID$$aWORKING_PAPER
000490845 3367_ $$028$$2EndNote$$aElectronic Article
000490845 3367_ $$2DRIVER$$apreprint
000490845 3367_ $$2BibTeX$$aARTICLE
000490845 3367_ $$2DataCite$$aOutput Types/Working Paper
000490845 500__ $$aPreprint is published in Materials & Design
000490845 520__ $$aThis paper focuses on the influence of the deposition process, deposition parameters, and substrate on various properties of the as-deposited state of Cr-Al-C thin films deposited by Direct Current Magnetron Sputtering (DCMS) and High Power Pulsed Magnetron Sputtering (HPPMS) with the variation of bias voltage and deposition temperature. Three substrates with different coefficients of thermal expansion and electrical conductivity were used. To investigate the microstructure, phase composition, residual stress state, and mechanical properties, ex-situ and in-situ synchrotron experiments were conducted accompanied by electron microscopy and nanoindentation. As-deposited Cr-Al-C coatings consisted of amorphous and crystalline areas, with the ratio highly dependent on the deposition process and substrate. The crystalline phase was identified as metastable (Cr,Al)2C. The highest crystallinity was determined for DCMS coatings. Increasing temperature and decreasing bias voltage increased coating crystallinity for HPPMS coatings. The influence of the deposition process and bias voltage was highly reduced for the substrate with low electrical conductivity. In-situ investigations of the stress state of amorphous areas revealed, that those were acting as a residual stress buffer. The hardness and Young’s modulus of the coatings were found to increase with crystallinity and were slightly increased for crystalline HPPMS coatings compared to DCMS coatings.
000490845 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000490845 536__ $$0G:(DE-H253)I-20170652$$aFS-Proposal: I-20170652 (I-20170652)$$cI-20170652$$x1
000490845 536__ $$0G:(DE-H253)I-20180296$$aFS-Proposal: I-20180296 (I-20180296)$$cI-20180296$$x2
000490845 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000490845 693__ $$0EXP:(DE-H253)P-P03-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P03-20150101$$aPETRA III$$fPETRA Beamline P03$$x0
000490845 693__ $$0EXP:(DE-H253)P-P07-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P07-20150101$$aPETRA III$$fPETRA Beamline P07$$x1
000490845 7001_ $$aKrülle, Tim$$b1
000490845 7001_ $$aEwenz, Lars$$b2
000490845 7001_ $$0P:(DE-H253)PIP1007377$$aKrywka, Christina$$b3
000490845 7001_ $$0P:(DE-H253)PIP1011657$$aDavydok, Anton$$b4
000490845 7001_ $$0P:(DE-H253)PIP1011120$$aStark, Andreas$$b5
000490845 7001_ $$aCremer, Rainer$$b6
000490845 7001_ $$aLeyens, Christoph$$b7
000490845 773__ $$0PERI:(DE-600)2234654-5$$a10.2139/ssrn.4163387$$x1556-5068
000490845 8564_ $$uhttps://bib-pubdb1.desy.de/record/490845/files/Preprint.pdf$$yRestricted
000490845 8564_ $$uhttps://bib-pubdb1.desy.de/record/490845/files/Preprint.pdf?subformat=pdfa$$xpdfa$$yRestricted
000490845 909CO $$ooai:bib-pubdb1.desy.de:490845$$pVDB
000490845 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081283$$a TU Dresden$$b0
000490845 9101_ $$0I:(DE-588b)16087541-9$$6P:(DE-H253)PIP1007377$$aHelmholtz-Zentrum Geesthacht$$b3$$kHZG
000490845 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007377$$aExternal Institute$$b3$$kExtern
000490845 9101_ $$0I:(DE-588b)16087541-9$$6P:(DE-H253)PIP1011657$$aHelmholtz-Zentrum Geesthacht$$b4$$kHZG
000490845 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011657$$aExternal Institute$$b4$$kExtern
000490845 9101_ $$0I:(DE-588b)16087541-9$$6P:(DE-H253)PIP1011120$$aHelmholtz-Zentrum Geesthacht$$b5$$kHZG
000490845 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011120$$aExternal Institute$$b5$$kExtern
000490845 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000490845 9141_ $$y2022
000490845 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000490845 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000490845 9201_ $$0I:(DE-H253)UDresden-20130903$$kUDresden$$lTU Dresden$$x1
000490845 9201_ $$0I:(DE-H253)Hereon-20210428$$kHereon$$lHelmholtz-Zentrum Hereon$$x2
000490845 980__ $$apreprint
000490845 980__ $$aVDB
000490845 980__ $$aI:(DE-H253)HAS-User-20120731
000490845 980__ $$aI:(DE-H253)UDresden-20130903
000490845 980__ $$aI:(DE-H253)Hereon-20210428
000490845 980__ $$aUNRESTRICTED