000490644 001__ 490644
000490644 005__ 20221221211424.0
000490644 037__ $$aPUBDB-2022-07879
000490644 041__ $$aEnglish
000490644 1001_ $$0P:(DE-H253)PIP1088204$$aMikuni, Vinicius Massami$$b0$$eCorresponding author
000490644 1112_ $$aXXIX International Workshop on Deep-Inelastic Scattering and Related Subjects$$cSantiago de Compostela$$d2022-05-02 - 2022-05-06$$gDIS2022$$wSpain
000490644 245__ $$aMulti-differential Jet Substructure Measurement in High $Q^2$ Deep-Inelastic Scattering with the H1 Detector
000490644 260__ $$c2022
000490644 3367_ $$033$$2EndNote$$aConference Paper
000490644 3367_ $$2DataCite$$aOther
000490644 3367_ $$2BibTeX$$aINPROCEEDINGS
000490644 3367_ $$2DRIVER$$aconferenceObject
000490644 3367_ $$2ORCID$$aLECTURE_SPEECH
000490644 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1671612978_13985
000490644 520__ $$aA study of different jet observables in high $Q^2$ Deep-Inelastic Scattering events close to the Born kinematics is presented. Differential and multi-differential cross-sections are presented as a function of the jet’s charged constituent multiplicity, momentum dispersion, jet charge, as well as three values of jet angularities. Results are split into multiple $Q^2$ intervals, probing the evolution of jet observables with energy scale. These measurements probe the description of parton showers and provide insight into non-perturbative QCD. Unfolded results are derived without binning using the machine learning-based method Omnifold. All observables are unfolded simultaneously by using reconstructedparticles inside jets as inputs to a graph neural network. Results are compared with a variety of predictions.
000490644 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000490644 693__ $$0EXP:(DE-H253)HERA(machine)-20150101$$1EXP:(DE-588)4159571-3$$5EXP:(DE-H253)HERA(machine)-20150101$$aHERA$$eFacility (machine) HERA$$x0
000490644 7001_ $$0P:(DE-H253)PIP1095640$$aNachman, Benjamin$$b1
000490644 8564_ $$uhttps://bib-pubdb1.desy.de/record/490644/files/DIS_2022_v2.pdf$$yRestricted
000490644 8564_ $$uhttps://bib-pubdb1.desy.de/record/490644/files/DIS_2022_v2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000490644 909CO $$ooai:bib-pubdb1.desy.de:490644$$pVDB
000490644 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1088204$$aExternal Institute$$b0$$kExtern
000490644 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095640$$aExternal Institute$$b1$$kExtern
000490644 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000490644 9141_ $$y2022
000490644 9201_ $$0I:(DE-H253)H1-20120806$$kH1$$lH1 Kollaboration$$x0
000490644 980__ $$aconf
000490644 980__ $$aVDB
000490644 980__ $$aI:(DE-H253)H1-20120806
000490644 980__ $$aUNRESTRICTED