001     490520
005     20250715180051.0
024 7 _ |a 10.3389/feart.2022.974148
|2 doi
024 7 _ |a 10.3204/PUBDB-2022-07819
|2 datacite_doi
024 7 _ |a altmetric:138284701
|2 altmetric
024 7 _ |a WOS:000890066800001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4308875722
037 _ _ |a PUBDB-2022-07819
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Kolesnikov, E.
|0 P:(DE-H253)PIP1092717
|b 0
|e Corresponding author
245 _ _ |a Strength and seismic anisotropy of textured FeSi at planetary core conditions
260 _ _ |a Lausanne
|c 2022
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1672662925_28260
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Elastic anisotropy of iron-bearing alloys and compounds can lead to a variation of seismic velocities along different directions in planetary cores. Understanding the deformation properties of candidate core-forming materials is thus necessary to reveal the details about the interior of distant planets. Silicon has been considered to be one of the dominant light elements in the cores. Here we investigated the deformation of the ε-FeSi phase up to 49 GPa and 1100 K employing the radial X-ray diffraction technique in diamond anvil cells. Stoichiometric FeSi is a good approximation for the deformation behavior of the Fe-FeSi system and the low-pressure polymorph of FeSi may be the stable phase in the cores of small terrestrial planets such as Mercury. Yield strength in ε-FeSi is higher than in hcp-Fe and hcp-Fe-Si alloys, in the temperature range we investigated here the temperature has little influence on the lattice strain parameters, yield strength, and anisotropy within experimental precision. The azimuthal anisotropy of the longitudinal sound waves in ε-FeSi is below 0.6% at low pressure and decreases further with compression, while the shear wave contrast is below 1.25% in the entire investigated pressure range. Therefore, polycrystalline aggregates of iron silicide are nearly isotropic at extreme conditions. Consequently, any observed anisotropy in planetary cores will be incompatible with silicon being the dominant light element in the core composition.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20170400 (I-20170400)
|0 G:(DE-H253)I-20170400
|c I-20170400
|x 2
536 _ _ |a FS-Proposal: I-20170881 (I-20170881)
|0 G:(DE-H253)I-20170881
|c I-20170881
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P02.2
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.2-20150101
|6 EXP:(DE-H253)P-P02.2-20150101
|x 0
700 1 _ |a Kupenko, I.
|0 P:(DE-H253)PIP1014563
|b 1
700 1 _ |a Achorner, M.
|0 P:(DE-H253)PIP1030218
|b 2
700 1 _ |a Plückthun, C.
|0 P:(DE-H253)PIP1032242
|b 3
|u desy
700 1 _ |a Liermann, H.-P.
|0 P:(DE-H253)PIP1007496
|b 4
|u desy
700 1 _ |a Merkel, S.
|0 P:(DE-H253)PIP1015100
|b 5
700 1 _ |a Sanchez-Valle, C.
|0 P:(DE-H253)PIP1029102
|b 6
773 _ _ |a 10.3389/feart.2022.974148
|g Vol. 10, p. 974148
|0 PERI:(DE-600)2741235-0
|p 974148
|t Frontiers in Earth Science
|v 10
|y 2022
|x 2296-6463
856 4 _ |u https://www.frontiersin.org/articles/10.3389/feart.2022.974148/full#h10
856 4 _ |u https://bib-pubdb1.desy.de/record/490520/files/Supplementary.doc
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/490520/files/Supplementary.docx
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/490520/files/Supplementary.odt
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/490520/files/Supplementary.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/490520/files/Text.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/490520/files/Text.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:490520
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a WWU Münster
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-H253)PIP1092717
910 1 _ |a WWU Münster
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-H253)PIP1014563
910 1 _ |a WWU Münster
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-H253)PIP1030218
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1032242
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1032242
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1007496
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1007496
910 1 _ |a Univ. Lille
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-H253)PIP1015100
910 1 _ |a WWU Münster
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-H253)PIP1029102
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT EARTH SC-SWITZ : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-13T10:36:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-13T10:36:48Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-13T10:36:48Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21