001     490514
005     20250724152144.0
024 7 _ |a 10.1021/acs.chemrev.2c00495
|2 doi
024 7 _ |a 0009-2665
|2 ISSN
024 7 _ |a 1520-6890
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-07813
|2 datacite_doi
024 7 _ |a altmetric:138893426
|2 altmetric
024 7 _ |a pmid:36418229
|2 pmid
024 7 _ |a WOS:000891289200001
|2 WOS
024 7 _ |a openalex:W4309831468
|2 openalex
037 _ _ |a PUBDB-2022-07813
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Sarma, Bidyut Bikash
|0 P:(DE-H253)PIP1094186
|b 0
|e Corresponding author
245 _ _ |a Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools
260 _ _ |a Washington, DC
|c 2022
|b ACS Publ.
336 7 _ |a Output Types/Book Review
|2 DataCite
336 7 _ |a Review
|b review
|m review
|0 PUB:(DE-HGF)36
|s 1673869475_17084
|2 PUB:(DE-HGF)
336 7 _ |a BOOK_REVIEW
|2 ORCID
336 7 _ |a review
|2 DRIVER
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P65
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P65-20150101
|6 EXP:(DE-H253)P-P65-20150101
|x 0
693 _ _ |a PETRA III
|f PETRA Beamline P64
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P64-20150101
|6 EXP:(DE-H253)P-P64-20150101
|x 1
700 1 _ |a Maurer, Florian
|0 P:(DE-H253)PIP1031645
|b 1
700 1 _ |a Doronkin, Dmitry E.
|0 P:(DE-H253)PIP1017208
|b 2
700 1 _ |a Grunwaldt, Jan-Dierk
|0 P:(DE-H253)PIP1008522
|b 3
773 _ _ |a 10.1021/acs.chemrev.2c00495
|g p. acs.chemrev.2c00495
|0 PERI:(DE-600)2003609-7
|n 1
|p 379 – 444
|t Chemical reviews
|v 123
|y 2022
|x 0009-2665
856 4 _ |u https://doi.org/10.1021/acs.chemrev.2c00495
856 4 _ |u https://bib-pubdb1.desy.de/record/490514/files/acs.chemrev.2c00495.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/490514/files/acs.chemrev.2c00495.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:490514
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1094186
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1031645
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1017208
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1008522
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-29
915 _ _ |a IF >= 70
|0 StatID:(DE-HGF)9970
|2 StatID
|b CHEM REV : 2021
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM REV : 2021
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a review
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21