001     490397
005     20250804160723.0
024 7 _ |a 10.1016/j.nima.2023.168930
|2 doi
024 7 _ |a 0167-5087
|2 ISSN
024 7 _ |a 0168-9002
|2 ISSN
024 7 _ |a 1872-9576
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-07714
|2 datacite_doi
024 7 _ |a WOS:001135378800001
|2 WOS
024 7 _ |a altmetric:138023829
|2 altmetric
024 7 _ |2 openalex
|a openalex:W4389266384
037 _ _ |a PUBDB-2022-07714
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Shchagin, Alexander
|0 P:(DE-H253)PIP1084609
|b 0
|e Corresponding author
|u desy
245 _ _ |a Surface-barrier detector with smoothly tunable thickness of depleted layer for study of ionization loss and dechanneling length of negatively charged particles channeling in a crystal
260 _ _ |a Amsterdam
|c 2024
|b North-Holland Publ. Co.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705659900_2902755
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A new method for the experimental study of ionization loss of relativistic negatively charged particles moving in a crystal in the channeling regime using a semiconductor surface-barrier detector with smoothly tunable thickness of the depleted layer is proposed. The thickness of the depleted layer in a flat semiconductor detector can be smoothly regulated by the value of the bias voltage applied to the detector. Therefore, the energy distribution of the ionization loss of relativistic particles which cross the detector and move in the channeling regime in the detector crystal can be measured along the path of the particles by varying the bias voltage of the detector and the dechanneling length can be found. Available literature data on experimental and theoretical researches of the dechanneling length are reviewed. The significant disagreement between the experimental and theoretical data is noted. Comparison of experimental data obtained by the detector-target with smoothly tunable thickness of the depleted layer with calculations can help to develop theoretical description of the dynamics of motion of negatively charged particles channeling in a crystal. A better understanding of the dechanneling length properties can be useful in the production of positrons and other particles such as neutrons by an electron beam in crystals, as well as in the development of crystalline undulators, and in the crystal-based extraction of electron beams from a synchrotron.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
542 _ _ |i 2024-02-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2023-12-05
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Kube, G.
|0 P:(DE-H253)PIP1002168
|b 1
700 1 _ |a Strokov, S. A.
|0 P:(DE-H253)PIP1080170
|b 2
|u desy
700 1 _ |a Lauth, W.
|0 0009-0006-2010-1986
|b 3
773 1 8 |a 10.1016/j.nima.2023.168930
|b Elsevier BV
|d 2024-02-01
|p 168930
|3 journal-article
|2 Crossref
|t Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
|v 1059
|y 2024
|x 0168-9002
773 _ _ |a 10.1016/j.nima.2023.168930
|g Vol. 1059, p. 168930 -
|0 PERI:(DE-600)1466532-3
|p 168930
|t Nuclear instruments & methods in physics research / Section A
|v 1059
|y 2024
|x 0168-9002
856 4 _ |u https://bib-pubdb1.desy.de/record/490397/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/490397/files/NIMA.PNG
856 4 _ |u https://bib-pubdb1.desy.de/record/490397/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/490397/files/article%20dechanneling%2030.pdf
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/490397/files/1-s2.0-S0168900223009300-main.pdf
856 4 _ |x icon
|u https://bib-pubdb1.desy.de/record/490397/files/NIMA.gif?subformat=icon
856 4 _ |x icon-180
|u https://bib-pubdb1.desy.de/record/490397/files/NIMA.jpg?subformat=icon-180
856 4 _ |x icon-700
|u https://bib-pubdb1.desy.de/record/490397/files/NIMA.jpg?subformat=icon-700
856 4 _ |y OpenAccess
|x pdfa
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/490397/files/article%20dechanneling%2030.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/490397/files/1-s2.0-S0168900223009300-main.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:490397
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1084609
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1002168
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1080170
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1080170
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2022-11-15
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL INSTRUM METH A : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-11
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
920 1 _ |0 I:(DE-H253)MDI-20120806
|k MDI
|l Diagnose und Instrumentierung
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MDI-20120806
980 _ _ |a APC
999 C 5 |a 10.1103/RevModPhys.46.129
|9 -- missing cx lookup --
|1 Gemmel
|p 129 -
|2 Crossref
|t Rev. Mod. Phys.
|v 46
|y 1974
999 C 5 |a 10.1103/PhysRevB.10.2669
|9 -- missing cx lookup --
|1 Tomimasu
|p 2669 -
|2 Crossref
|t Phys. Rev. B
|v 10
|y 1974
999 C 5 |a 10.1103/PhysRevLett.36.1245
|9 -- missing cx lookup --
|1 Fich
|p 1245 -
|2 Crossref
|t Phys. Rev. Lett.
|v 36
|y 1976
999 C 5 |a 10.1016/0550-3213(77)90216-4
|9 -- missing cx lookup --
|1 Esbensen
|p 281 -
|2 Crossref
|t Nucl. Phys. B
|v 127
|y 1977
999 C 5 |1 Adeishvili
|y 1988
|2 Crossref
|o Adeishvili 1988
999 C 5 |a 10.1016/0370-2693(79)90492-1
|9 -- missing cx lookup --
|1 Elishev
|p 387 -
|2 Crossref
|t Phys. Lett. B
|v 88
|y 1979
999 C 5 |a 10.1016/0370-2693(80)90376-7
|9 -- missing cx lookup --
|1 Bak
|p 505 -
|2 Crossref
|t Phys. Lett. B
|v 93
|y 1980
999 C 5 |1 Andreev
|y 1982
|2 Crossref
|o Andreev 1982
999 C 5 |1 Biryukov
|y 1997
|2 Crossref
|o Biryukov 1997
999 C 5 |1 Afonin
|y 2021
|2 Crossref
|o Afonin 2021
999 C 5 |a 10.1016/j.nimb.2005.03.004
|9 -- missing cx lookup --
|1 Fliller
|p 47 -
|2 Crossref
|t Nuclear Instruments and Methods in Physics Research Beam B
|v 234
|y 2005
999 C 5 |a 10.1142/S0217751X19430073
|1 Shiltsev
|9 -- missing cx lookup --
|2 Crossref
|t Int. J. Mod. Phys.
|v 34
|y 2019
999 C 5 |a 10.1142/S0217751X22300046
|1 Scandale
|9 -- missing cx lookup --
|2 Crossref
|t Int. J. Mod. Phys.
|v 37
|y 2022
999 C 5 |a 10.1103/PhysRevApplied.14.064066
|1 Mirarchi
|9 -- missing cx lookup --
|2 Crossref
|t Phys. Rev. Appl.
|v 14
|y 2020
999 C 5 |1 Adeishvili
|y 1984
|2 Crossref
|o Adeishvili 1984
999 C 5 |a 10.1103/PhysRevB.18.1039
|9 -- missing cx lookup --
|1 Esbensen
|p 1039 -
|2 Crossref
|t Phys. Rev. B
|v 18
|y 1978
999 C 5 |1 Vit’ko
|y 1988
|2 Crossref
|o Vit’ko 1988
999 C 5 |a 10.1016/j.nimb.2008.05.012
|9 -- missing cx lookup --
|1 Backe
|p 3835 -
|2 Crossref
|t Nucl. Instrum. Methods Phys. Res. B
|v 266
|y 2008
999 C 5 |a 10.1142/S0217751X10049980
|9 -- missing cx lookup --
|1 Lauth
|p 136 -
|2 Crossref
|t Int. J. Mod. Phys.
|v 25
|y 2010
999 C 5 |a 10.1016/j.nimb.2015.03.077
|9 -- missing cx lookup --
|1 Backe
|p 24 -
|2 Crossref
|t Nucl. Instrum. Methods Phys. Res., Sect. B
|v 355
|y 2015
999 C 5 |1 Baier
|y 1998
|2 Crossref
|o Baier 1998
999 C 5 |a 10.1016/j.physletb.2012.12.061
|9 -- missing cx lookup --
|1 Scandale
|p 70 -
|2 Crossref
|t Phys. Lett. B
|v 719
|y 2013
999 C 5 |a 10.1103/PhysRevAccelBeams.19.071001
|1 Wistisen
|9 -- missing cx lookup --
|2 Crossref
|t Phys. Rev. Accel. Beams
|v 19
|y 2016
999 C 5 |a 10.1140/epjd/s10053-022-00463-x
|9 -- missing cx lookup --
|1 Backe
|p 143 -
|2 Crossref
|t Eur. Phys. J. D
|v 76
|y 2022
999 C 5 |a 10.1016/j.physletb.2016.12.032
|9 -- missing cx lookup --
|1 Biryukov
|p 276 -
|2 Crossref
|t Phys. Lett. B
|v 765
|y 2017
999 C 5 |a 10.1140/epjc/s10052-020-8127-z
|9 -- missing cx lookup --
|1 Trofymenko
|p 689 -
|2 Crossref
|t Eur. Phys. J. C
|v 80
|y 2020
999 C 5 |a 10.26565/2312-4334-2021-4-07
|9 -- missing cx lookup --
|1 Trofymenko
|p 68 -
|2 Crossref
|t East European Journal of Physics
|v 4
|y 2021
999 C 5 |a 10.1016/j.nimb.2016.09.023
|9 -- missing cx lookup --
|1 Shchagin
|p 29 -
|2 Crossref
|t Nucl. Instrum. Methods Phys. Res., Sect. B
|v 387
|y 2016
999 C 5 |a 10.1016/j.nimb.2016.11.004
|9 -- missing cx lookup --
|1 Nazhmudinov
|p 69 -
|2 Crossref
|t Nucl. Instrum. Methods Phys. Res., Sect. B
|v 391
|y 2017
999 C 5 |1 Büker
|y 1971
|2 Crossref
|o Büker 1971
999 C 5 |1 Spieler
|y 2005
|2 Crossref
|o Spieler 2005
999 C 5 |1 Landau
|y 1944
|2 Crossref
|o Landau 1944
999 C 5 |a 10.1088/1361-6455/abd961
|1 Nazhmudinov
|9 -- missing cx lookup --
|2 Crossref
|t J. Phys. B Atom. Mol. Opt. Phys.
|v 54
|y 2021
999 C 5 |a 10.1088/1748-0221/17/01/P01015
|1 Nazhmudinov
|9 -- missing cx lookup --
|2 Crossref
|t J. Instrum.
|v 17
|y 2022
999 C 5 |1 Kowalski
|y 1970
|2 Crossref
|o Kowalski 1970
999 C 5 |1 Morokhovskii
|y 1989
|2 Crossref
|o Morokhovskii 1989
999 C 5 |a 10.1016/0370-2693(95)00496-8
|9 -- missing cx lookup --
|1 Shul’ga
|p 373 -
|2 Crossref
|t Phys. Lett. B
|v 353
|y 1995
999 C 5 |a 10.1140/epjc/s10052-021-09021-y
|9 -- missing cx lookup --
|1 Bandiera
|p 238 -
|2 Crossref
|t Eur. Phys. J. C
|v 81
|y 2021
999 C 5 |a 10.1016/0168-9002(94)90865-6
|9 -- missing cx lookup --
|1 Artru
|p 443 -
|2 Crossref
|t Nucl. Instrum. Methods Phys. Res., Sect. A
|v 344
|y 1994
999 C 5 |a 10.1016/j.nimb.2004.03.088
|9 -- missing cx lookup --
|1 Satoh
|p 3 -
|2 Crossref
|t Nucl. Instrum. Methods Phys. Res., Sect. B
|v 227
|y 2005
999 C 5 |a 10.1016/j.nimb.2013.03.047
|9 -- missing cx lookup --
|1 Backe
|p 37 -
|2 Crossref
|t Nucl. Instrum. Methods Phys. Res., Sect. B
|v 309
|y 2013
999 C 5 |a 10.1140/epjc/s10052-022-10115-4
|9 -- missing cx lookup --
|1 Sytov
|p 197 -
|2 Crossref
|t The European Physical Journal C
|v 82
|y 2022
999 C 5 |2 Crossref
|u V.M. Biryukov, On the scaling of electron dechanneling length in bent crystals. (arXiv preprint, 2022), https://arxiv.org/ftp/arxiv/papers/2201/2201.13113.pdf.


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21