000486709 001__ 486709
000486709 005__ 20250724152119.0
000486709 0247_ $$2doi$$a10.1016/j.msea.2022.144315
000486709 0247_ $$2ISSN$$a0921-5093
000486709 0247_ $$2ISSN$$a1873-4936
000486709 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-07429
000486709 0247_ $$2WOS$$aWOS:000905143500001
000486709 0247_ $$2openalex$$aopenalex:W4308559090
000486709 037__ $$aPUBDB-2022-07429
000486709 041__ $$aEnglish
000486709 082__ $$a530
000486709 1001_ $$0P:(DE-H253)PIP1092865$$aHecht, U.$$b0$$eCorresponding author
000486709 245__ $$aMicrostructure evolution in the hypo-eutectic alloy Al$_{0.75}$CrFeNi$_{2.1}$ manufactured by laser powder bed fusion and subsequent annealing
000486709 260__ $$aAmsterdam$$bElsevier$$c2022
000486709 3367_ $$2DRIVER$$aarticle
000486709 3367_ $$2DataCite$$aOutput Types/Journal article
000486709 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670582372_26860
000486709 3367_ $$2BibTeX$$aARTICLE
000486709 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000486709 3367_ $$00$$2EndNote$$aJournal Article
000486709 520__ $$aThe hypo-eutectic medium entropy alloy Al$_{0.75}$CrFeNi$_{2.1}$ was processed by laser powder bed fusion (LPBF). The off-equilibrium solidification conditions prohibited coupled eutectic growth. Instead, the primary face centered cubic phase A1(FCC) solidified with a cellular morphology and the body centered, initially ordered B2(BCC) phase formed as a thin intercellular envelope. During post-build annealing an ultrafine quasi-lamellar pattern evolved following BCC growth and coarsening. The novel solid state transformation from cellular to lamellar morphology was attributed to a pronounced anisotropy of the FCC|BCC phase boundary energy. Microstructure evolution was also studied during continuous heating using in situ high-energy synchrotron X-ray diffraction (HEXRD) carried out at the beamline P07-HEMS of PETRA III (German Electron Synchrotron, DESY). The ultrafine and nano-scale features of the microstructure were quantitatively analyzed by atom probe tomography (APT) in the as-built condition and after isothermal annealing at 950 °C. The benefits of LPBF processing were discussed on the basis of mechanical properties measured by 3-point bending. The estimated tensile properties after annealing at 950 °C/6 h reached YS ≈ 860 MPa, UTS ≈1384 MPa with an elongation at fracture of ≈11%. Tensile properties in the as-built condition were comparable to martensitic steels.
000486709 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000486709 536__ $$0G:(DE-H253)I-20210694$$aFS-Proposal: I-20210694 (I-20210694)$$cI-20210694$$x1
000486709 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000486709 693__ $$0EXP:(DE-H253)P-P07-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P07-20150101$$aPETRA III$$fPETRA Beamline P07$$x0
000486709 7001_ $$aVayyala, A.$$b1
000486709 7001_ $$0P:(DE-H253)PIP1014319$$aBarriobero Vila, Pere$$b2
000486709 7001_ $$aNavaeilavasani, N.$$b3
000486709 7001_ $$aGein, S.$$b4
000486709 7001_ $$aCazic, I.$$b5
000486709 7001_ $$00000-0003-3292-5342$$aMayer, J.$$b6
000486709 773__ $$0PERI:(DE-600)2012154-4$$a10.1016/j.msea.2022.144315$$gp. 144315 -$$p144315 $$tMaterials science and engineering / A$$v144315$$x0921-5093$$y2022
000486709 8564_ $$uhttps://doi.org/10.1016/j.msea.2022.144315
000486709 8564_ $$uhttps://bib-pubdb1.desy.de/record/486709/files/preproof-main.pdf$$yPublished on 2022-11-09. Available in OpenAccess from 2024-11-09.
000486709 8564_ $$uhttps://bib-pubdb1.desy.de/record/486709/files/preproof-main.pdf?subformat=pdfa$$xpdfa$$yPublished on 2022-11-09. Available in OpenAccess from 2024-11-09.
000486709 909CO $$ooai:bib-pubdb1.desy.de:486709$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000486709 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092865$$aExternal Institute$$b0$$kExtern
000486709 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1014319$$aExternal Institute$$b2$$kExtern
000486709 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000486709 9141_ $$y2022
000486709 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000486709 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000486709 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-03
000486709 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000486709 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000486709 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000486709 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000486709 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000486709 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000486709 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAT SCI ENG A-STRUCT : 2019$$d2021-02-03
000486709 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000486709 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000486709 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000486709 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000486709 980__ $$ajournal
000486709 980__ $$aVDB
000486709 980__ $$aUNRESTRICTED
000486709 980__ $$aI:(DE-H253)HAS-User-20120731
000486709 9801_ $$aFullTexts