000486701 001__ 486701
000486701 005__ 20240227162450.0
000486701 0247_ $$2INSPIRETeX$$aAmano:2022asw
000486701 0247_ $$2inspire$$ainspire:2149086
000486701 0247_ $$2arXiv$$aarXiv:2209.03521
000486701 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-07421
000486701 037__ $$aPUBDB-2022-07421
000486701 041__ $$aEnglish
000486701 082__ $$a530
000486701 088__ $$2arXiv$$aarXiv:2209.03521
000486701 1001_ $$00000-0002-2140-6961$$aAmano, Takanobu$$b0$$eCorresponding author
000486701 245__ $$aNonthermal electron acceleration at collisionless quasi-perpendicular shocks
000486701 260__ $$c2022
000486701 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1670507635_19510
000486701 3367_ $$2ORCID$$aWORKING_PAPER
000486701 3367_ $$028$$2EndNote$$aElectronic Article
000486701 3367_ $$2DRIVER$$apreprint
000486701 3367_ $$2BibTeX$$aARTICLE
000486701 3367_ $$2DataCite$$aOutput Types/Working Paper
000486701 500__ $$aTo appear in Reviews of Modern Plasma Physics as an invited review
000486701 520__ $$aShock waves propagating in collisionless heliospheric and astrophysical plasmas have been studied extensively over the decades. One prime motivation is to understand the nonthermal particle acceleration at shocks. Although the theory of diffusive shock acceleration (DSA) has long been the standard for cosmic-ray acceleration at shocks, plasma physical understanding of particle acceleration remains elusive. In this review, we discuss nonthermal electron acceleration mechanisms at quasi-perpendicular shocks, for which substantial progress has been made in recent years. The discussion presented in this review is restricted to the following three specific topics: The first is stochastic shock drift acceleration (SSDA), which is a relatively new mechanism for electron injection into DSA. The basic mechanism, related in-situ observations and kinetic simulations results, and how it is connected with DSA will be discussed. Second, we discuss shock surfing acceleration (SSA) at very high Mach number shocks relevant to young supernova remnants (SNRs). While the original proposal under the one-dimensional assumption is unrealistic, SSA has now been proven efficient by a fully three-dimensional kinetic simulation. We discuss the multidimensional nature of SSA and its role in electron injection. Finally, we discuss the current understanding of the magnetized Weibel-dominated shock. It is essentially a magnetized shock in which the reflected-gyrating ions dominate the formation of the shock structure but with a substantial magnetic field amplification by the ion-Weibel instability. Spontaneous magnetic reconnection of self-generated current sheets within the shock structure is an interesting consequence of Weibel-generated strong magnetic turbulence. Although the exact condition for active magnetic reconnection has not been clarified, we argue that high Mach number shocks with both Alfvén and sound Mach numbers exceeding 20–40 will likely behave as a Weibel-dominated shock. Despite a number of interesting recent findings, the relative roles of SSDA, SSA, and magnetic reconnection for electron acceleration at collisionless shocks and how the dominant particle acceleration mechanisms change depending on shock parameters remain to be answered.
000486701 536__ $$0G:(DE-HGF)POF4-613$$a613 - Matter and Radiation from the Universe (POF4-613)$$cPOF4-613$$fPOF IV$$x0
000486701 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000486701 650_7 $$2autogen$$aParticle acceleration
000486701 650_7 $$2autogen$$aCosmic rays
000486701 650_7 $$2autogen$$aCollisionless shock
000486701 650_7 $$2autogen$$aWave-particle interaction
000486701 650_7 $$2autogen$$aPlasma waves
000486701 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000486701 7001_ $$0Yosuke.Matsumoto.1$$aMatsumoto, Yosuke$$b1
000486701 7001_ $$0P:(DE-H253)PIP1083006$$aBohdan, Artem$$b2$$udesy
000486701 7001_ $$0O.Kobzar.2$$aKobzar, Oleh$$b3
000486701 7001_ $$0S.Matsukiyo.1$$aMatsukiyo, Shuichi$$b4
000486701 7001_ $$0M.Oka.55$$aOka, Mitsuo$$b5
000486701 7001_ $$aNiemiec, Jacek$$b6
000486701 7001_ $$0P:(DE-H253)PIP1010085$$aPohl, Martin$$b7$$udesy
000486701 7001_ $$0Masahiro.Hoshino.1$$aHoshino, Masahiro$$b8
000486701 8564_ $$uhttps://bib-pubdb1.desy.de/record/486701/files/2209.03521v1.pdf$$yOpenAccess
000486701 8564_ $$uhttps://bib-pubdb1.desy.de/record/486701/files/2209.03521v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000486701 909CO $$ooai:bib-pubdb1.desy.de:486701$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000486701 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083006$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000486701 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083006$$aExternal Institute$$b2$$kExtern
000486701 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1010085$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000486701 9131_ $$0G:(DE-HGF)POF4-613$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vMatter and Radiation from the Universe$$x0
000486701 9141_ $$y2022
000486701 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000486701 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000486701 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000486701 9201_ $$0I:(DE-H253)Z_THAT-20210408$$kZ_THAT$$lTheoretische Astroteilchenphysik$$x0
000486701 980__ $$apreprint
000486701 980__ $$aVDB
000486701 980__ $$aUNRESTRICTED
000486701 980__ $$aI:(DE-H253)Z_THAT-20210408
000486701 9801_ $$aFullTexts