001     486414
005     20240112092936.0
037 _ _ |a PUBDB-2022-07288
041 _ _ |a English
100 1 _ |a Fogel, Vladimir
|0 P:(DE-H253)PIP1005062
|b 0
|e Corresponding author
111 2 _ |a 14th International Particle Accelerator Conference
|g IPAC'23
|c Venice
|d 2023-05-07 - 2023-05-12
|w Italy
245 _ _ |a Optimization of Klystron Drive Signal and HV Shape to Reduce Energy Consumption during Operation of the European XFEL
260 _ _ |c 2023
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1671013439_16273
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Currently 26 RF stations are in operation at the European X-ray Free Electron Laser (XFEL) and all RF stations can deliver sufficient power to support 600 µs beam pulse with an energy up to 17 GeV. These beam parameters require a power consumption of about 4.9 MW for high-power RF. Of course, the simplest way to save power is to reduce the XFEL repetition rate, but with some additional work and research, and without modifying any hardware, we can save the modulator power, without any impact on the XFEL performance. To reduce the power, we offer two methods that can be used together or separately. The first one is to make full use of the available power of the klystron during the rise and fall time of the HV pulse, and partial use of the available power during cavity filling by using phase and amplitude compensation. As a result, we can reduce the length of the HV pulse, because we fill the cavities with energy earlier. The second one is to slowly reduce the klystron HV during flattop. In total we can reduce the power consumption up to 30%, at the cost of making the LLRF control more complicated as it needs to deal with large phase and amplitude changes. To solve this problem, we propose two possibilities: first, feed-forward table rotation, and second, the addition of a feedback loop for the klystron. In this report we will present some of experimental results from the klystron test stand and from several XFEL RF stations.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a 6G13 - Accelerator of European XFEL (POF4-6G13)
|0 G:(DE-HGF)POF4-6G13
|c POF4-6G13
|f POF IV
|x 1
693 _ _ |a XFEL
|e Facility (machine) XFEL
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL(machine)-20150101
|5 EXP:(DE-H253)XFEL(machine)-20150101
|x 0
700 1 _ |a Bellandi, Andrea
|0 P:(DE-H253)PIP1080593
|b 1
|e Contributor
700 1 _ |a Bousonville, Michael
|0 P:(DE-H253)PIP1012894
|b 2
|e Contributor
700 1 _ |a Branlard, Julien
|0 P:(DE-H253)PIP1014945
|b 3
|e Contributor
700 1 _ |a Butkowski, Lukasz
|0 P:(DE-H253)PIP1007075
|b 4
|e Contributor
700 1 _ |a Cherepenko, Andrey
|0 P:(DE-H253)PIP1006622
|b 5
|e Contributor
700 1 _ |a Choroba, Stefan
|0 P:(DE-H253)PIP1003160
|b 6
|e Contributor
700 1 _ |a Hartung, Jens
|0 P:(DE-HGF)0
|b 7
|e Contributor
700 1 _ |a Hauberg, Axel
|0 P:(DE-H253)PIP1002463
|b 8
|e Contributor
700 1 _ |a Goeller, Sebastian
|0 P:(DE-H253)PIP1006205
|b 9
|e Contributor
700 1 _ |a Walker, Nicholas John
|0 P:(DE-H253)PIP1001358
|b 10
|e Contributor
700 1 _ |a Weinhausen, Timo
|0 P:(DE-H253)PIP1006409
|b 11
|e Contributor
909 C O |o oai:bib-pubdb1.desy.de:486414
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1005062
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1080593
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1012894
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1014945
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1007075
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1006622
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1003160
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1002463
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1006205
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1001358
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1006409
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and Technologies
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G13
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator of European XFEL
|x 1
914 1 _ |y 2023
920 1 _ |0 I:(DE-H253)MHF-20220923
|k MHF
|l Hochfrequenztechnik Radio Frequency Tech
|x 0
920 1 _ |0 I:(DE-H253)MPC-20210120
|k MPC
|l Entwicklung Leistungselektronik
|x 1
920 1 _ |0 I:(DE-H253)MSK-20120731
|k MSK
|l Strahlkontrollen
|x 2
920 1 _ |0 I:(DE-H253)MPY-20120731
|k MPY
|l Beschleunigerphysik
|x 3
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)MHF-20220923
980 _ _ |a I:(DE-H253)MPC-20210120
980 _ _ |a I:(DE-H253)MSK-20120731
980 _ _ |a I:(DE-H253)MPY-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21