000486414 001__ 486414
000486414 005__ 20240112092936.0
000486414 037__ $$aPUBDB-2022-07288
000486414 041__ $$aEnglish
000486414 1001_ $$0P:(DE-H253)PIP1005062$$aFogel, Vladimir$$b0$$eCorresponding author
000486414 1112_ $$a14th International Particle Accelerator Conference$$cVenice$$d2023-05-07 - 2023-05-12$$gIPAC'23$$wItaly
000486414 245__ $$aOptimization of Klystron Drive Signal and HV Shape to Reduce Energy Consumption during Operation of the European XFEL
000486414 260__ $$c2023
000486414 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1671013439_16273
000486414 3367_ $$033$$2EndNote$$aConference Paper
000486414 3367_ $$2BibTeX$$aINPROCEEDINGS
000486414 3367_ $$2DRIVER$$aconferenceObject
000486414 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000486414 3367_ $$2ORCID$$aOTHER
000486414 520__ $$aCurrently 26 RF stations are in operation at the European X-ray Free Electron Laser (XFEL) and all RF stations can deliver sufficient power to support 600 µs beam pulse with an energy up to 17 GeV. These beam parameters require a power consumption of about 4.9 MW for high-power RF. Of course, the simplest way to save power is to reduce the XFEL repetition rate, but with some additional work and research, and without modifying any hardware, we can save the modulator power, without any impact on the XFEL performance. To reduce the power, we offer two methods that can be used together or separately. The first one is to make full use of the available power of the klystron during the rise and fall time of the HV pulse, and partial use of the available power during cavity filling by using phase and amplitude compensation. As a result, we can reduce the length of the HV pulse, because we fill the cavities with energy earlier. The second one is to slowly reduce the klystron HV during flattop. In total we can reduce the power consumption up to 30%, at the cost of making the LLRF control more complicated as it needs to deal with large phase and amplitude changes. To solve this problem, we propose two possibilities: first, feed-forward table rotation, and second, the addition of a feedback loop for the klystron. In this report we will present some of experimental results from the klystron test stand and from several XFEL RF stations.
000486414 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000486414 536__ $$0G:(DE-HGF)POF4-6G13$$a6G13 - Accelerator of European XFEL (POF4-6G13)$$cPOF4-6G13$$fPOF IV$$x1
000486414 693__ $$0EXP:(DE-H253)XFEL(machine)-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL(machine)-20150101$$aXFEL$$eFacility (machine) XFEL$$x0
000486414 7001_ $$0P:(DE-H253)PIP1080593$$aBellandi, Andrea$$b1$$eContributor
000486414 7001_ $$0P:(DE-H253)PIP1012894$$aBousonville, Michael$$b2$$eContributor
000486414 7001_ $$0P:(DE-H253)PIP1014945$$aBranlard, Julien$$b3$$eContributor
000486414 7001_ $$0P:(DE-H253)PIP1007075$$aButkowski, Lukasz$$b4$$eContributor
000486414 7001_ $$0P:(DE-H253)PIP1006622$$aCherepenko, Andrey$$b5$$eContributor
000486414 7001_ $$0P:(DE-H253)PIP1003160$$aChoroba, Stefan$$b6$$eContributor
000486414 7001_ $$0P:(DE-HGF)0$$aHartung, Jens$$b7$$eContributor
000486414 7001_ $$0P:(DE-H253)PIP1002463$$aHauberg, Axel$$b8$$eContributor
000486414 7001_ $$0P:(DE-H253)PIP1006205$$aGoeller, Sebastian$$b9$$eContributor
000486414 7001_ $$0P:(DE-H253)PIP1001358$$aWalker, Nicholas John$$b10$$eContributor
000486414 7001_ $$0P:(DE-H253)PIP1006409$$aWeinhausen, Timo$$b11$$eContributor
000486414 909CO $$ooai:bib-pubdb1.desy.de:486414$$pVDB
000486414 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1005062$$aExternal Institute$$b0$$kExtern
000486414 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1080593$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000486414 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012894$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000486414 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1014945$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000486414 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007075$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000486414 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006622$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000486414 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003160$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000486414 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-HGF)0$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000486414 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002463$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000486414 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006205$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY
000486414 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001358$$aDeutsches Elektronen-Synchrotron$$b10$$kDESY
000486414 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006409$$aDeutsches Elektronen-Synchrotron$$b11$$kDESY
000486414 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and Technologies$$vAccelerator Research and Development$$x0
000486414 9131_ $$0G:(DE-HGF)POF4-6G13$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vAccelerator of European XFEL$$x1
000486414 9141_ $$y2023
000486414 9201_ $$0I:(DE-H253)MHF-20220923$$kMHF$$lHochfrequenztechnik Radio Frequency Tech$$x0
000486414 9201_ $$0I:(DE-H253)MPC-20210120$$kMPC$$lEntwicklung Leistungselektronik$$x1
000486414 9201_ $$0I:(DE-H253)MSK-20120731$$kMSK$$lStrahlkontrollen$$x2
000486414 9201_ $$0I:(DE-H253)MPY-20120731$$kMPY$$lBeschleunigerphysik$$x3
000486414 980__ $$aabstract
000486414 980__ $$aVDB
000486414 980__ $$aI:(DE-H253)MHF-20220923
000486414 980__ $$aI:(DE-H253)MPC-20210120
000486414 980__ $$aI:(DE-H253)MSK-20120731
000486414 980__ $$aI:(DE-H253)MPY-20120731
000486414 980__ $$aUNRESTRICTED