000486309 001__ 486309
000486309 005__ 20250724152118.0
000486309 0247_ $$2doi$$a10.1007/JHEP11(2022)018
000486309 0247_ $$2INSPIRETeX$$aGimenez-Grau:2022czc
000486309 0247_ $$2inspire$$ainspire:2141807
000486309 0247_ $$2ISSN$$a1029-8479
000486309 0247_ $$2ISSN$$a1126-6708
000486309 0247_ $$2ISSN$$a1127-2236
000486309 0247_ $$2arXiv$$aarXiv:2208.11715
000486309 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-07227
000486309 0247_ $$2altmetric$$aaltmetric:134991491
000486309 0247_ $$2WOS$$aWOS:000879172600008
000486309 0247_ $$2openalex$$aopenalex:W4295135713
000486309 037__ $$aPUBDB-2022-07227
000486309 041__ $$aEnglish
000486309 082__ $$a530
000486309 088__ $$2arXiv$$aarXiv:2208.11715
000486309 088__ $$2DESY$$aDESY-22-142
000486309 1001_ $$0P:(DE-H253)PIP1086631$$aGimenez-Grau, Aleix$$b0
000486309 245__ $$aBootstrapping line defects with $O(2)$ global symmetry
000486309 260__ $$a[Trieste]$$bSISSA$$c2022
000486309 3367_ $$2DRIVER$$aarticle
000486309 3367_ $$2DataCite$$aOutput Types/Journal article
000486309 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1713283078_2951528
000486309 3367_ $$2BibTeX$$aARTICLE
000486309 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000486309 3367_ $$00$$2EndNote$$aJournal Article
000486309 500__ $$a54 pages, 11 figures
000486309 520__ $$aWe use the numerical bootstrap to study conformal line defects with $O(2)$ global symmetry. Our results are very general and capture in particular line defects originating from bulk CFTs with a global symmetry, which can either be preserved or partially broken by the presence of the defect. We begin with an agnostic approach and perform a systematic bootstrap study of correlation functions between two canonical operators on the defect: the displacement and the tilt. We then focus on two interesting theories: a monodromy line defect and a localized magnetic field line defect. To this end, we combine the numerical bootstrap with the $\varepsilon$-expansion, where we complement existing results in the literature with additional calculations. For the monodromy defect our numerical results are consistent with expectations, with known analytic solutions sitting inside our numerical bounds. For the localized magnetic field line defect our plots show a series of intriguing cusps which we explore.
000486309 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000486309 536__ $$0G:(DE-DFG)EmmyNoether$$aEmmy Noether - Emmy Noether Nachwuchsgruppe (EmmyNoether)$$cEmmyNoether$$x1
000486309 536__ $$0G:(GEPRIS)400570283$$aDFG project 400570283 - Das Conformal Bootstrap Programm (400570283)$$c400570283$$x2
000486309 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000486309 650_7 $$2INSPIRE$$asymmetry: global
000486309 650_7 $$2INSPIRE$$afield theory: conformal
000486309 650_7 $$2INSPIRE$$adefect
000486309 650_7 $$2INSPIRE$$abootstrap
000486309 650_7 $$2INSPIRE$$amagnetic field
000486309 650_7 $$2INSPIRE$$amonodromy
000486309 650_7 $$2INSPIRE$$aO(2)
000486309 650_7 $$2INSPIRE$$acapture
000486309 650_7 $$2INSPIRE$$acorrelation function
000486309 650_7 $$2INSPIRE$$anumerical calculations
000486309 650_7 $$2autogen$$aBoundary Quantum Field Theory
000486309 650_7 $$2autogen$$aRenormalization Group
000486309 650_7 $$2autogen$$aScale and Conformal Symmetries
000486309 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000486309 7001_ $$00000-0002-0625-9780$$aLauria, Edoardo$$b1
000486309 7001_ $$0P:(DE-H253)PIP1031480$$aLiendo, Pedro$$b2
000486309 7001_ $$0P:(DE-H253)PIP1090382$$aVliet, Philine Julia van$$b3$$eCorresponding author$$udesy
000486309 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP11(2022)018$$gVol. 11, no. 11, p. 18$$n11$$p18$$tJournal of high energy physics$$v11$$x1029-8479$$y2022
000486309 7870_ $$0PUBDB-2022-04552$$aGimenez-Grau, Aleix et.al.$$d2022$$iIsParent$$rDESY-22-142 ; arXiv:2208.11715$$tBootstrapping line defects with $O(2)$ global symmetry
000486309 8564_ $$uhttps://bib-pubdb1.desy.de/record/486309/files/JHEP11%282022%29018.pdf$$yOpenAccess
000486309 8564_ $$uhttps://bib-pubdb1.desy.de/record/486309/files/JHEP11%282022%29018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000486309 8767_ $$92022$$d2023-02-10$$eAPC$$jFlatrate$$lSCOAP3
000486309 909CO $$ooai:bib-pubdb1.desy.de:486309$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000486309 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1086631$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000486309 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1031480$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000486309 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1090382$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000486309 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000486309 9141_ $$y2022
000486309 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000486309 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000486309 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000486309 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000486309 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000486309 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000486309 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000486309 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000486309 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000486309 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2019$$d2021-01-30
000486309 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2019$$d2021-01-30
000486309 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-30
000486309 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-30
000486309 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000486309 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000486309 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000486309 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000486309 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-30
000486309 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000486309 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000486309 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000486309 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-01-30
000486309 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000486309 980__ $$ajournal
000486309 980__ $$aVDB
000486309 980__ $$aI:(DE-H253)T-20120731
000486309 980__ $$aAPC
000486309 980__ $$aUNRESTRICTED
000486309 9801_ $$aAPC
000486309 9801_ $$aFullTexts