000486309 001__ 486309 000486309 005__ 20250724152118.0 000486309 0247_ $$2doi$$a10.1007/JHEP11(2022)018 000486309 0247_ $$2INSPIRETeX$$aGimenez-Grau:2022czc 000486309 0247_ $$2inspire$$ainspire:2141807 000486309 0247_ $$2ISSN$$a1029-8479 000486309 0247_ $$2ISSN$$a1126-6708 000486309 0247_ $$2ISSN$$a1127-2236 000486309 0247_ $$2arXiv$$aarXiv:2208.11715 000486309 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-07227 000486309 0247_ $$2altmetric$$aaltmetric:134991491 000486309 0247_ $$2WOS$$aWOS:000879172600008 000486309 0247_ $$2openalex$$aopenalex:W4295135713 000486309 037__ $$aPUBDB-2022-07227 000486309 041__ $$aEnglish 000486309 082__ $$a530 000486309 088__ $$2arXiv$$aarXiv:2208.11715 000486309 088__ $$2DESY$$aDESY-22-142 000486309 1001_ $$0P:(DE-H253)PIP1086631$$aGimenez-Grau, Aleix$$b0 000486309 245__ $$aBootstrapping line defects with $O(2)$ global symmetry 000486309 260__ $$a[Trieste]$$bSISSA$$c2022 000486309 3367_ $$2DRIVER$$aarticle 000486309 3367_ $$2DataCite$$aOutput Types/Journal article 000486309 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1713283078_2951528 000486309 3367_ $$2BibTeX$$aARTICLE 000486309 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000486309 3367_ $$00$$2EndNote$$aJournal Article 000486309 500__ $$a54 pages, 11 figures 000486309 520__ $$aWe use the numerical bootstrap to study conformal line defects with $O(2)$ global symmetry. Our results are very general and capture in particular line defects originating from bulk CFTs with a global symmetry, which can either be preserved or partially broken by the presence of the defect. We begin with an agnostic approach and perform a systematic bootstrap study of correlation functions between two canonical operators on the defect: the displacement and the tilt. We then focus on two interesting theories: a monodromy line defect and a localized magnetic field line defect. To this end, we combine the numerical bootstrap with the $\varepsilon$-expansion, where we complement existing results in the literature with additional calculations. For the monodromy defect our numerical results are consistent with expectations, with known analytic solutions sitting inside our numerical bounds. For the localized magnetic field line defect our plots show a series of intriguing cusps which we explore. 000486309 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0 000486309 536__ $$0G:(DE-DFG)EmmyNoether$$aEmmy Noether - Emmy Noether Nachwuchsgruppe (EmmyNoether)$$cEmmyNoether$$x1 000486309 536__ $$0G:(GEPRIS)400570283$$aDFG project 400570283 - Das Conformal Bootstrap Programm (400570283)$$c400570283$$x2 000486309 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de 000486309 650_7 $$2INSPIRE$$asymmetry: global 000486309 650_7 $$2INSPIRE$$afield theory: conformal 000486309 650_7 $$2INSPIRE$$adefect 000486309 650_7 $$2INSPIRE$$abootstrap 000486309 650_7 $$2INSPIRE$$amagnetic field 000486309 650_7 $$2INSPIRE$$amonodromy 000486309 650_7 $$2INSPIRE$$aO(2) 000486309 650_7 $$2INSPIRE$$acapture 000486309 650_7 $$2INSPIRE$$acorrelation function 000486309 650_7 $$2INSPIRE$$anumerical calculations 000486309 650_7 $$2autogen$$aBoundary Quantum Field Theory 000486309 650_7 $$2autogen$$aRenormalization Group 000486309 650_7 $$2autogen$$aScale and Conformal Symmetries 000486309 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000486309 7001_ $$00000-0002-0625-9780$$aLauria, Edoardo$$b1 000486309 7001_ $$0P:(DE-H253)PIP1031480$$aLiendo, Pedro$$b2 000486309 7001_ $$0P:(DE-H253)PIP1090382$$aVliet, Philine Julia van$$b3$$eCorresponding author$$udesy 000486309 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP11(2022)018$$gVol. 11, no. 11, p. 18$$n11$$p18$$tJournal of high energy physics$$v11$$x1029-8479$$y2022 000486309 7870_ $$0PUBDB-2022-04552$$aGimenez-Grau, Aleix et.al.$$d2022$$iIsParent$$rDESY-22-142 ; arXiv:2208.11715$$tBootstrapping line defects with $O(2)$ global symmetry 000486309 8564_ $$uhttps://bib-pubdb1.desy.de/record/486309/files/JHEP11%282022%29018.pdf$$yOpenAccess 000486309 8564_ $$uhttps://bib-pubdb1.desy.de/record/486309/files/JHEP11%282022%29018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000486309 8767_ $$92022$$d2023-02-10$$eAPC$$jFlatrate$$lSCOAP3 000486309 909CO $$ooai:bib-pubdb1.desy.de:486309$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000486309 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1086631$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY 000486309 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1031480$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY 000486309 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1090382$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY 000486309 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0 000486309 9141_ $$y2022 000486309 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000486309 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000486309 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000486309 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal 000486309 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30 000486309 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30 000486309 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000486309 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30 000486309 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000486309 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2019$$d2021-01-30 000486309 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2019$$d2021-01-30 000486309 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-30 000486309 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-30 000486309 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30 000486309 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30 000486309 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30 000486309 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3 000486309 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-30 000486309 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30 000486309 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30 000486309 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger 000486309 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-01-30 000486309 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0 000486309 980__ $$ajournal 000486309 980__ $$aVDB 000486309 980__ $$aI:(DE-H253)T-20120731 000486309 980__ $$aAPC 000486309 980__ $$aUNRESTRICTED 000486309 9801_ $$aAPC 000486309 9801_ $$aFullTexts