001     485766
005     20250715175708.0
024 7 _ |a 10.1103/PhysRevApplied.18.054027
|2 doi
024 7 _ |a 2331-7019
|2 ISSN
024 7 _ |a 2331-7043
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-06832
|2 datacite_doi
024 7 _ |a WOS:000885458800005
|2 WOS
024 7 _ |2 openalex
|a openalex:W4308616318
037 _ _ |a PUBDB-2022-06832
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Maillet, Benjamin
|0 0000-0002-0230-6770
|b 0
245 _ _ |a Diffusionlike Drying of a Nanoporous Solid as Revealed by Magnetic Resonance Imaging
260 _ _ |a College Park, Md. [u.a.]
|c 2022
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1672827702_24597
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Drying plays a central role in various fabrication processes and applications of functional nanoporous materials, most prominently in relation to energy storage and conversion. During such processes, liquid coexists with air inside the sample, leading to transport as a result of concentration gradients of vapor and/or liquid. Experimentally, it is extremely challenging to unravel this transport phenomenology inside the hidden geometry of porous media. Here, we observe the drying of a model nanoporous material (monolithic mesoporous silica glass, Vycor) with magnetic resonance imaging. We show that, for various boundary conditions (air-flux intensities), no dry region develops, but the sample desaturates in depth. This desaturation is almost homogeneous throughout the sample for weak air flux, while saturation gradients can be observed for sufficiently strong air flux. We demonstrate that the transport of water is mainly ensured by liquid flow towards the free surface, resulting from a gradient of vapor pressure, associated with local saturation (via the desorption curve), leading to a gradient of liquid pressure (via the Kelvin law). Assuming otherwise standard hydrodynamic characteristics of the nanoconfined liquid, this results in a diffusionlike model, which appears to represent experimental data very well in terms of the spatial distribution of water over time inside the sample for various boundary conditions (air-flux intensities). Finally, we propose a predictive model of the detailed drying characteristics of a nanomaterial from knowledge of its pore size, permeability, and desorption curve. This provides an insight into the rational design of drying-based processes employing functional nanoporous materials and allows for a mechanistic understanding of drying phenomenologies in natural nanoporous media.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Dittrich, Guido
|0 P:(DE-H253)PIP1097683
|b 1
700 1 _ |a Huber, Patrick
|0 P:(DE-H253)PIP1013897
|b 2
700 1 _ |a Coussot, Philippe
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1103/PhysRevApplied.18.054027
|g Vol. 18, no. 5, p. 054027
|0 PERI:(DE-600)2760310-6
|n 5
|p 054027
|t Physical review applied
|v 18
|y 2022
|x 2331-7019
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/485766/files/DiffusionlikeDryingPhysRevApplied.18.054027.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/485766/files/DiffusionlikeDryingPhysRevApplied.18.054027.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:485766
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1097683
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1013897
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1013897
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-31
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2019
|d 2021-01-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-31
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-31
920 1 _ |0 I:(DE-H253)TUHH-20210331
|k TUHH
|l Technische Universität Hamburg-Harburg
|x 0
920 1 _ |0 I:(DE-H253)CIMMS-20211022
|k CIMMS
|l CIMMS-RA Center for integr. Multiscale M
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)TUHH-20210331
980 _ _ |a I:(DE-H253)CIMMS-20211022
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21