000485766 001__ 485766
000485766 005__ 20250715175708.0
000485766 0247_ $$2doi$$a10.1103/PhysRevApplied.18.054027
000485766 0247_ $$2ISSN$$a2331-7019
000485766 0247_ $$2ISSN$$a2331-7043
000485766 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-06832
000485766 0247_ $$2WOS$$aWOS:000885458800005
000485766 0247_ $$2openalex$$aopenalex:W4308616318
000485766 037__ $$aPUBDB-2022-06832
000485766 041__ $$aEnglish
000485766 082__ $$a530
000485766 1001_ $$00000-0002-0230-6770$$aMaillet, Benjamin$$b0
000485766 245__ $$aDiffusionlike Drying of a Nanoporous Solid as Revealed by Magnetic Resonance Imaging
000485766 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2022
000485766 3367_ $$2DRIVER$$aarticle
000485766 3367_ $$2DataCite$$aOutput Types/Journal article
000485766 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672827702_24597
000485766 3367_ $$2BibTeX$$aARTICLE
000485766 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000485766 3367_ $$00$$2EndNote$$aJournal Article
000485766 520__ $$aDrying plays a central role in various fabrication processes and applications of functional nanoporous materials, most prominently in relation to energy storage and conversion. During such processes, liquid coexists with air inside the sample, leading to transport as a result of concentration gradients of vapor and/or liquid. Experimentally, it is extremely challenging to unravel this transport phenomenology inside the hidden geometry of porous media. Here, we observe the drying of a model nanoporous material (monolithic mesoporous silica glass, Vycor) with magnetic resonance imaging. We show that, for various boundary conditions (air-flux intensities), no dry region develops, but the sample desaturates in depth. This desaturation is almost homogeneous throughout the sample for weak air flux, while saturation gradients can be observed for sufficiently strong air flux. We demonstrate that the transport of water is mainly ensured by liquid flow towards the free surface, resulting from a gradient of vapor pressure, associated with local saturation (via the desorption curve), leading to a gradient of liquid pressure (via the Kelvin law). Assuming otherwise standard hydrodynamic characteristics of the nanoconfined liquid, this results in a diffusionlike model, which appears to represent experimental data very well in terms of the spatial distribution of water over time inside the sample for various boundary conditions (air-flux intensities). Finally, we propose a predictive model of the detailed drying characteristics of a nanomaterial from knowledge of its pore size, permeability, and desorption curve. This provides an insight into the rational design of drying-based processes employing functional nanoporous materials and allows for a mechanistic understanding of drying phenomenologies in natural nanoporous media.
000485766 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000485766 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000485766 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000485766 7001_ $$0P:(DE-H253)PIP1097683$$aDittrich, Guido$$b1
000485766 7001_ $$0P:(DE-H253)PIP1013897$$aHuber, Patrick$$b2
000485766 7001_ $$0P:(DE-HGF)0$$aCoussot, Philippe$$b3$$eCorresponding author
000485766 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.18.054027$$gVol. 18, no. 5, p. 054027$$n5$$p054027$$tPhysical review applied$$v18$$x2331-7019$$y2022
000485766 8564_ $$uhttps://bib-pubdb1.desy.de/record/485766/files/DiffusionlikeDryingPhysRevApplied.18.054027.pdf$$yOpenAccess
000485766 8564_ $$uhttps://bib-pubdb1.desy.de/record/485766/files/DiffusionlikeDryingPhysRevApplied.18.054027.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000485766 909CO $$ooai:bib-pubdb1.desy.de:485766$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000485766 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097683$$aExternal Institute$$b1$$kExtern
000485766 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013897$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000485766 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013897$$aExternal Institute$$b2$$kExtern
000485766 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000485766 9141_ $$y2022
000485766 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000485766 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000485766 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000485766 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2019$$d2021-01-31
000485766 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000485766 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000485766 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000485766 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000485766 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-31
000485766 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000485766 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000485766 9201_ $$0I:(DE-H253)TUHH-20210331$$kTUHH$$lTechnische Universität Hamburg-Harburg$$x0
000485766 9201_ $$0I:(DE-H253)CIMMS-20211022$$kCIMMS$$lCIMMS-RA Center for integr. Multiscale M$$x1
000485766 980__ $$ajournal
000485766 980__ $$aVDB
000485766 980__ $$aUNRESTRICTED
000485766 980__ $$aI:(DE-H253)TUHH-20210331
000485766 980__ $$aI:(DE-H253)CIMMS-20211022
000485766 9801_ $$aFullTexts