001     485691
005     20250724152045.0
024 7 _ |a 10.1039/D2CP01045C
|2 doi
024 7 _ |a 1463-9076
|2 ISSN
024 7 _ |a 1463-9084
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-06777
|2 datacite_doi
024 7 _ |a 36111816
|2 pmid
024 7 _ |a WOS:000854204300001
|2 WOS
024 7 _ |a openalex:W4296036478
|2 openalex
037 _ _ |a PUBDB-2022-06777
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Mukhina, Tetiana
|0 P:(DE-H253)PIP1090000
|b 0
245 _ _ |a pH-Dependent physicochemical properties of ornithine lipid in mono- and bilayers
260 _ _ |a Cambridge
|c 2022
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669627805_20537
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In certain bacteria, phosphatidylethanolamine lipids (PEL) get largely replaced by phosphate-free ornithine lipids (OL) under conditions of phosphate starvation. It has so far been unknown how much these two lipid types deviate in their physicochemical properties, and how strongly bacteria thus have to adapt in order to compensate for the difference. Here, we use differential scanning calorimetry, X-ray scattering, and X-ray fluorescence to investigate the properties of OL with saturated C14 alkyl chains in mono- and bilayers. OL is found to have a greater tendency than chain-analogous PEL to form ordered structures and, in contrast to PEL, even a molecular superlattice based on a hydrogen bonding network between the headgroups. This superlattice is virtually electrically uncharged and persists over a wide pH range. Our results indicate that OL and PEL behave very differently in ordered single-component membranes but may behave more similarly in fluid multicomponent membranes.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20190719 (I-20190719)
|0 G:(DE-H253)I-20190719
|c I-20190719
|x 1
536 _ _ |a FS-Proposal: I-20190800 (I-20190800)
|0 G:(DE-H253)I-20190800
|c I-20190800
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P08
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P08-20150101
|6 EXP:(DE-H253)P-P08-20150101
|x 0
700 1 _ |a Pabst, Georg
|0 P:(DE-H253)PIP1021303
|b 1
700 1 _ |a Ruysschaert, Jean-Marie
|b 2
700 1 _ |a Brezesinski, Gerald
|0 P:(DE-H253)PIP1008088
|b 3
700 1 _ |a Schneck, Emanuel
|0 P:(DE-H253)PIP1011036
|b 4
|e Corresponding author
773 _ _ |a 10.1039/D2CP01045C
|g Vol. 24, no. 37, p. 22778 - 22791
|0 PERI:(DE-600)1476244-4
|n 37
|p 22778 - 22791
|t Physical chemistry, chemical physics
|v 24
|y 2022
|x 1463-9076
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/485691/files/d2cp01045c.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/485691/files/d2cp01045c.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:485691
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1090000
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1021303
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1008088
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1011036
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS CHEM CHEM PHYS : 2019
|d 2021-01-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21