001 | 485673 | ||
005 | 20230213130527.0 | ||
037 | _ | _ | |a PUBDB-2022-06760 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Björklund Svensson, Jonas Halfdan |0 P:(DE-H253)PIP1094593 |b 0 |e Corresponding author |
111 | 2 | _ | |a 20th Advanced Accelerator Concepts Workshop |g AAC |c Hauppage, NY |d 2022-11-06 - 2022-11-11 |w USA |
245 | _ | _ | |a Direct measurements of emittance growth from Coulomb scattering on neutral gas atoms in a plasma lens - Efforts towards quantifying fundamentally limiting factors of plasma-based particle-beam optics |
260 | _ | _ | |c 2022 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1670928135_31459 |2 PUB:(DE-HGF) |
520 | _ | _ | |a Plasma lenses are of much interest to the plasma-accelerator community as their cylindrically symmetric and large focusing gradients facilitate beam-optics control of the highly divergent beams usually associated with plasma accelerators. However, a fundamental difference between plasma-based and conventional accelerators/focusing devices is that in the former the beams propagate through matter rather than a vacuum. This invariably leads to interactions such as Coulomb scattering between the beam and plasma particles, which in turn likely leads to emittance growth. Whereas the beam sizes inside plasma accelerators are comparatively small, limiting the induced emittance growth, the situation in plasma lenses is quite different as the beam size must be larger in these devices than in the accelerators to allow collimation or focusing. In particular, in active plasma lenses beam sizes must be large to avoid driving a wake, which in turn increases the induced emittance growth from scattering. This is further exacerbated by the fact that using gases of heavier elements, which scatter more strongly than their lighter counterparts, is preferable as they produce linear focusing gradients. However, direct measurements of the induced emittance growth from Coulomb scattering have hitherto not been shown for beam and lens parameters relevant to plasma-based focusing devices. In this work, we show the measurements of emittance growth from scattering in neutral (i.e. un-ionized) argon, nitrogen, and hydrogen over a range of pressures. Results from a corresponding set of simulations in GEANT4 and Ocelot, which represent the experimental environment, are also outlined. |
536 | _ | _ | |a 621 - Accelerator Research and Development (POF4-621) |0 G:(DE-HGF)POF4-621 |c POF4-621 |f POF IV |x 0 |
693 | _ | _ | |a FLASH |e FLASHForward |1 EXP:(DE-H253)FLASH-20150101 |0 EXP:(DE-H253)FLASHForward-20150101 |5 EXP:(DE-H253)FLASHForward-20150101 |x 0 |
700 | 1 | _ | |a Boulton, Lewis |0 P:(DE-H253)PIP1086724 |b 1 |
700 | 1 | _ | |a Garland, Matthew James |0 P:(DE-H253)PIP1084257 |b 2 |
700 | 1 | _ | |a Lindstroem, Carl Andreas |0 P:(DE-H253)PIP1086874 |b 3 |
700 | 1 | _ | |a Pena Asmus, Felipe Lars |0 P:(DE-H253)PIP1094542 |b 4 |
700 | 1 | _ | |a Schröder, Sarah |0 P:(DE-H253)PIP1023434 |b 5 |
700 | 1 | _ | |a Wesch, Stephan |0 P:(DE-H253)PIP1006306 |b 6 |
700 | 1 | _ | |a Wood, Jonathan Christopher |0 P:(DE-H253)PIP1089935 |b 7 |
700 | 1 | _ | |a Osterhoff, Jens |0 P:(DE-H253)PIP1012785 |b 8 |
700 | 1 | _ | |a D'Arcy, Richard |0 P:(DE-H253)PIP1027904 |b 9 |
856 | 4 | _ | |u https://indico.classe.cornell.edu/event/2108/contributions/2051/ |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/485673/files/AAC_emittance_growth_scattering_v3.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/485673/files/AAC_emittance_growth_scattering_v3.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:bib-pubdb1.desy.de:485673 |p VDB |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1094593 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1086724 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1084257 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1086874 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1094542 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1023434 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1006306 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1089935 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1012785 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 9 |6 P:(DE-H253)PIP1027904 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and Technologies |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
914 | 1 | _ | |y 2022 |
920 | 1 | _ | |0 I:(DE-H253)HH_FH_FTX_AS-20210421 |k HH_FH_FTX_AS |l FTX Fachgruppe AST |x 0 |
920 | 1 | _ | |0 I:(DE-H253)MPA-20200816 |k MPA |l Plasma Accelerators |x 1 |
920 | 1 | _ | |0 I:(DE-H253)MPA2-20210408 |k MPA2 |l Beam-Driven Plasma Accelerators |x 2 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)HH_FH_FTX_AS-20210421 |
980 | _ | _ | |a I:(DE-H253)MPA-20200816 |
980 | _ | _ | |a I:(DE-H253)MPA2-20210408 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|