000485673 001__ 485673
000485673 005__ 20230213130527.0
000485673 037__ $$aPUBDB-2022-06760
000485673 041__ $$aEnglish
000485673 1001_ $$0P:(DE-H253)PIP1094593$$aBjörklund Svensson, Jonas Halfdan$$b0$$eCorresponding author
000485673 1112_ $$a20th Advanced Accelerator Concepts Workshop$$cHauppage, NY$$d2022-11-06 - 2022-11-11$$gAAC$$wUSA
000485673 245__ $$aDirect measurements of emittance growth from Coulomb scattering on neutral gas atoms in a plasma lens - Efforts towards quantifying fundamentally limiting factors of plasma-based particle-beam optics 
000485673 260__ $$c2022
000485673 3367_ $$033$$2EndNote$$aConference Paper
000485673 3367_ $$2DataCite$$aOther
000485673 3367_ $$2BibTeX$$aINPROCEEDINGS
000485673 3367_ $$2DRIVER$$aconferenceObject
000485673 3367_ $$2ORCID$$aLECTURE_SPEECH
000485673 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1670928135_31459
000485673 520__ $$aPlasma lenses are of much interest to the plasma-accelerator community as their cylindrically symmetric and large focusing gradients facilitate beam-optics control of the highly divergent beams usually associated with plasma accelerators. However, a fundamental difference between plasma-based and conventional accelerators/focusing devices is that in the former the beams propagate through matter rather than a vacuum. This invariably leads to interactions such as Coulomb scattering between the beam and plasma particles, which in turn likely leads to emittance growth. Whereas the beam sizes inside plasma accelerators are comparatively small, limiting the induced emittance growth, the situation in plasma lenses is quite different as the beam size must be larger in these devices than in the accelerators to allow collimation or focusing. In particular, in active plasma lenses beam sizes must be large to avoid driving a wake, which in turn increases the induced emittance growth from scattering. This is further exacerbated by the fact that using gases of heavier elements, which scatter more strongly than their lighter counterparts, is preferable as they produce linear focusing gradients. However, direct measurements of the induced emittance growth from Coulomb scattering have hitherto not been shown for beam and lens parameters relevant to plasma-based focusing devices. In this work, we show the measurements of emittance growth from scattering in neutral (i.e. un-ionized) argon, nitrogen, and hydrogen over a range of pressures. Results from a corresponding set of simulations in GEANT4 and Ocelot, which represent the experimental environment, are also outlined.
000485673 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000485673 693__ $$0EXP:(DE-H253)FLASHForward-20150101$$1EXP:(DE-H253)FLASH-20150101$$5EXP:(DE-H253)FLASHForward-20150101$$aFLASH$$eFLASHForward$$x0
000485673 7001_ $$0P:(DE-H253)PIP1086724$$aBoulton, Lewis$$b1
000485673 7001_ $$0P:(DE-H253)PIP1084257$$aGarland, Matthew James$$b2
000485673 7001_ $$0P:(DE-H253)PIP1086874$$aLindstroem, Carl Andreas$$b3
000485673 7001_ $$0P:(DE-H253)PIP1094542$$aPena Asmus, Felipe Lars$$b4
000485673 7001_ $$0P:(DE-H253)PIP1023434$$aSchröder, Sarah$$b5
000485673 7001_ $$0P:(DE-H253)PIP1006306$$aWesch, Stephan$$b6
000485673 7001_ $$0P:(DE-H253)PIP1089935$$aWood, Jonathan Christopher$$b7
000485673 7001_ $$0P:(DE-H253)PIP1012785$$aOsterhoff, Jens$$b8
000485673 7001_ $$0P:(DE-H253)PIP1027904$$aD'Arcy, Richard$$b9
000485673 8564_ $$uhttps://indico.classe.cornell.edu/event/2108/contributions/2051/
000485673 8564_ $$uhttps://bib-pubdb1.desy.de/record/485673/files/AAC_emittance_growth_scattering_v3.pdf$$yRestricted
000485673 8564_ $$uhttps://bib-pubdb1.desy.de/record/485673/files/AAC_emittance_growth_scattering_v3.pdf?subformat=pdfa$$xpdfa$$yRestricted
000485673 909CO $$ooai:bib-pubdb1.desy.de:485673$$pVDB
000485673 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1094593$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000485673 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086724$$aExternal Institute$$b1$$kExtern
000485673 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1084257$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000485673 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1086874$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000485673 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1094542$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000485673 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023434$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000485673 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006306$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000485673 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1089935$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000485673 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012785$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000485673 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027904$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY
000485673 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and Technologies$$vAccelerator Research and Development$$x0
000485673 9141_ $$y2022
000485673 9201_ $$0I:(DE-H253)HH_FH_FTX_AS-20210421$$kHH_FH_FTX_AS$$lFTX Fachgruppe AST$$x0
000485673 9201_ $$0I:(DE-H253)MPA-20200816$$kMPA$$lPlasma Accelerators$$x1
000485673 9201_ $$0I:(DE-H253)MPA2-20210408$$kMPA2$$lBeam-Driven Plasma Accelerators$$x2
000485673 980__ $$aconf
000485673 980__ $$aVDB
000485673 980__ $$aI:(DE-H253)HH_FH_FTX_AS-20210421
000485673 980__ $$aI:(DE-H253)MPA-20200816
000485673 980__ $$aI:(DE-H253)MPA2-20210408
000485673 980__ $$aUNRESTRICTED