001     485328
005     20250720040727.0
024 7 _ |a 10.1364/OE.464378
|2 doi
024 7 _ |a 10.3204/PUBDB-2022-06630
|2 datacite_doi
024 7 _ |a 36242292
|2 pmid
024 7 _ |a WOS:000850229100061
|2 WOS
024 7 _ |2 openalex
|a openalex:W4285012507
024 7 _ |a altmetric:171173700
|2 altmetric
037 _ _ |a PUBDB-2022-06630
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Wiesner, Felix
|0 0000-0001-5352-9205
|b 0
|e Corresponding author
245 _ _ |a Characterization of encapsulated graphene layers using extreme ultraviolet coherence tomography
260 _ _ |a Washington, DC
|c 2022
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674650272_7295
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Many applications of two-dimensional materials such as graphene require the encapsulation in bulk material. While a variety of methods exist for the structural and functional characterization of uncovered 2D materials, there is a need for methods that image encapsulated 2D materials as well as the surrounding matter. In this work, we use extreme ultraviolet coherence tomography to image graphene flakes buried beneath 200 nm of silicon. We show that we can identify mono-, bi-, and trilayers of graphene and quantify the thickness of the silicon bulk on top by measuring the depth-resolved reflectivity. Furthermore, we estimate the quality of the graphene interface by incorporating a model that includes the interface roughness. These results are verified by atomic force microscopy and prove that extreme ultraviolet coherence tomography is a suitable tool for imaging 2D materials embedded in bulk materials.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Skruszewicz, Slawomir
|0 P:(DE-H253)PIP1010480
|b 1
700 1 _ |a Rödel, Christian
|0 P:(DE-H253)PIP1013861
|b 2
700 1 _ |a Abel, Johann Jakob
|0 P:(DE-H253)PIP1029962
|b 3
700 1 _ |a Reinhard, Julius
|b 4
700 1 _ |a Wünsche, Martin
|0 P:(DE-H253)PIP1015082
|b 5
700 1 _ |a Nathanael, Jan
|b 6
700 1 _ |a Grünewald, Marco
|b 7
700 1 _ |a Hübner, Uwe
|b 8
700 1 _ |a Paulus, Gerhard G.
|0 P:(DE-H253)PIP1014055
|b 9
700 1 _ |a Fuchs, Silvio
|0 P:(DE-H253)PIP1014011
|b 10
773 _ _ |a 10.1364/OE.464378
|g Vol. 30, no. 18, p. 32267 -
|0 PERI:(DE-600)1491859-6
|n 18
|p 32267 - 32279
|t Optics express
|v 30
|y 2022
|x 1094-4087
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/485328/files/oe-30-18-32267.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/485328/files/oe-30-18-32267.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:485328
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1010480
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1013861
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1029962
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1015082
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1014055
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1014011
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b OPT EXPRESS : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 0
920 1 _ |0 I:(DE-H253)Uni_Jena-20181204
|k Uni Jena
|l Uni Jena
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 _ _ |a I:(DE-H253)Uni_Jena-20181204
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21