Home > Publications database > Unravelling the Origin of Ultra‐Low Conductivity in SrTiO$_3$ Thin Films: Sr Vacancies and Ti on A‐Sites Cause Fermi Level Pinning > print |
001 | 484450 | ||
005 | 20250715175828.0 | ||
024 | 7 | _ | |a 10.1002/adfm.202202226 |2 doi |
024 | 7 | _ | |a 1057-9257 |2 ISSN |
024 | 7 | _ | |a 1099-0712 |2 ISSN |
024 | 7 | _ | |a 1616-301X |2 ISSN |
024 | 7 | _ | |a 1616-3028 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2022-06265 |2 datacite_doi |
024 | 7 | _ | |a altmetric:131592454 |2 altmetric |
024 | 7 | _ | |a WOS:000821635900001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4284896101 |
037 | _ | _ | |a PUBDB-2022-06265 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Morgenbesser, Maximilian |0 P:(DE-H253)PIP1089793 |b 0 |
245 | _ | _ | |a Unravelling the Origin of Ultra‐Low Conductivity in SrTiO$_3$ Thin Films: Sr Vacancies and Ti on A‐Sites Cause Fermi Level Pinning |
260 | _ | _ | |a Weinheim |c 2022 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1669904148_22448 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Different SrTiO$_3$ thin films are investigated to unravel the nature of ultra-low conductivities recently found in SrTiO$_3$ films prepared by pulsed laser deposition. Impedance spectroscopy reveals electronically pseudo-intrinsic conductivities for a broad range of different dopants (Fe, Al, Ni) and partly high dopant concentrations up to several percent. Using inductively-coupled plasma optical emission spectroscopy and reciprocal space mapping, a severe Sr deficiency is found and positron annihilation lifetime spectroscopy revealed Sr vacancies as predominant point defects. From synchrotron-based X-ray standing wave and X-ray absorption spectroscopy measurements, a change in site occupation is deduced for Fe-doped SrTiO$_3$ films, accompanied by a change in the dopant type. Based on these experiments, a model is deduced, which explains the almost ubiquitous pseudo-intrinsic conductivity of these films. Sr deficiency is suggested as key driver by introducing Sr vacancies and causing site changes (Fe$_{Sr}$ and Ti$_{Sr}$) to accommodate nonstoichiometry. Sr vacancies act as mid-gap acceptor states, pinning the Fermi level, provided that additional donor states (most probably Ti$_{Sr}^{\bullet\bullet}$) are present. Defect chemical modeling revealed that such a Fermi level pinning also causes a self-limitation of the Ti site change and leads to a very robust pseudo-intrinsic situation, irrespective of Sr/Ti ratios and doping. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P24 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P24-20150101 |6 EXP:(DE-H253)P-P24-20150101 |x 0 |
700 | 1 | _ | |a Viernstein, Alexander |0 P:(DE-H253)PIP1089775 |b 1 |
700 | 1 | _ | |a Schmid, Alexander |0 P:(DE-HGF)0 |b 2 |e Corresponding author |
700 | 1 | _ | |a Herzig, Christopher |b 3 |
700 | 1 | _ | |a Kubicek, Markus |0 P:(DE-H253)PIP1090459 |b 4 |
700 | 1 | _ | |a Taibl, Stefanie |b 5 |
700 | 1 | _ | |a Bimashofer, Gesara |b 6 |
700 | 1 | _ | |a Stahn, Jochen |b 7 |
700 | 1 | _ | |a Vaz, Carlos Antonio Fernandes |b 8 |
700 | 1 | _ | |a Döbeli, Max |b 9 |
700 | 1 | _ | |a Biautti, Federico |b 10 |
700 | 1 | _ | |a de Dios Sirvent, Juan |b 11 |
700 | 1 | _ | |a Liedke, Maciej Oskar |b 12 |
700 | 1 | _ | |a Butterling, Maik |b 13 |
700 | 1 | _ | |a Kamiński, Michał |0 P:(DE-H253)PIP1081135 |b 14 |
700 | 1 | _ | |a Tolkiehn, Martin |0 P:(DE-H253)PIP1007498 |b 15 |
700 | 1 | _ | |a Vonk, Vedran |0 P:(DE-H253)PIP1013931 |b 16 |
700 | 1 | _ | |a Stierle, Andreas |0 P:(DE-H253)PIP1012873 |b 17 |
700 | 1 | _ | |a Wagner, Andreas |0 P:(DE-H253)PIP1032567 |b 18 |
700 | 1 | _ | |a Tarancon, Albert |b 19 |
700 | 1 | _ | |a Limbeck, Andreas |b 20 |
700 | 1 | _ | |a Fleig, Jürgen |0 P:(DE-H253)PIP1024063 |b 21 |
773 | _ | _ | |a 10.1002/adfm.202202226 |g Vol. 32, no. 38, p. 2202226 - |0 PERI:(DE-600)2039420-2 |n 38 |p 2202226 |t Advanced functional materials |v 32 |y 2022 |x 1057-9257 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/484450/files/Adv%20Funct%20Materials%20-%202022%20-%20Morgenbesser%20-%20Unravelling%20the%20Origin%20of%20Ultra%E2%80%90Low%20Conductivity%20in%20SrTiO3%20Thin%20Films%20Sr-1.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/484450/files/Adv%20Funct%20Materials%20-%202022%20-%20Morgenbesser%20-%20Unravelling%20the%20Origin%20of%20Ultra%E2%80%90Low%20Conductivity%20in%20SrTiO3%20Thin%20Films%20Sr-1.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:484450 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1089793 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1089775 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1090459 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 14 |6 P:(DE-H253)PIP1081135 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 15 |6 P:(DE-H253)PIP1007498 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 16 |6 P:(DE-H253)PIP1013931 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 16 |6 P:(DE-H253)PIP1013931 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 17 |6 P:(DE-H253)PIP1012873 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 17 |6 P:(DE-H253)PIP1012873 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 18 |6 P:(DE-H253)PIP1032567 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 18 |6 P:(DE-H253)PIP1032567 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 21 |6 P:(DE-H253)PIP1024063 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l From Matter to Materials and Life |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2021-01-28 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-28 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b ADV FUNCT MATER : 2019 |d 2021-01-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV FUNCT MATER : 2019 |d 2021-01-28 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-28 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-28 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-D-20210408 |k FS-PETRA-D |l PETRA-D |x 1 |
920 | 1 | _ | |0 I:(DE-H253)FS-NL-20120731 |k FS-NL |l Nanolab |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-PETRA-D-20210408 |
980 | _ | _ | |a I:(DE-H253)FS-NL-20120731 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|