001     484450
005     20250715175828.0
024 7 _ |a 10.1002/adfm.202202226
|2 doi
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-06265
|2 datacite_doi
024 7 _ |a altmetric:131592454
|2 altmetric
024 7 _ |a WOS:000821635900001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4284896101
037 _ _ |a PUBDB-2022-06265
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Morgenbesser, Maximilian
|0 P:(DE-H253)PIP1089793
|b 0
245 _ _ |a Unravelling the Origin of Ultra‐Low Conductivity in SrTiO$_3$ Thin Films: Sr Vacancies and Ti on A‐Sites Cause Fermi Level Pinning
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669904148_22448
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Different SrTiO$_3$ thin films are investigated to unravel the nature of ultra-low conductivities recently found in SrTiO$_3$ films prepared by pulsed laser deposition. Impedance spectroscopy reveals electronically pseudo-intrinsic conductivities for a broad range of different dopants (Fe, Al, Ni) and partly high dopant concentrations up to several percent. Using inductively-coupled plasma optical emission spectroscopy and reciprocal space mapping, a severe Sr deficiency is found and positron annihilation lifetime spectroscopy revealed Sr vacancies as predominant point defects. From synchrotron-based X-ray standing wave and X-ray absorption spectroscopy measurements, a change in site occupation is deduced for Fe-doped SrTiO$_3$ films, accompanied by a change in the dopant type. Based on these experiments, a model is deduced, which explains the almost ubiquitous pseudo-intrinsic conductivity of these films. Sr deficiency is suggested as key driver by introducing Sr vacancies and causing site changes (Fe$_{Sr}$ and Ti$_{Sr}$) to accommodate nonstoichiometry. Sr vacancies act as mid-gap acceptor states, pinning the Fermi level, provided that additional donor states (most probably Ti$_{Sr}^{\bullet\bullet}$) are present. Defect chemical modeling revealed that such a Fermi level pinning also causes a self-limitation of the Ti site change and leads to a very robust pseudo-intrinsic situation, irrespective of Sr/Ti ratios and doping.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P24
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P24-20150101
|6 EXP:(DE-H253)P-P24-20150101
|x 0
700 1 _ |a Viernstein, Alexander
|0 P:(DE-H253)PIP1089775
|b 1
700 1 _ |a Schmid, Alexander
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Herzig, Christopher
|b 3
700 1 _ |a Kubicek, Markus
|0 P:(DE-H253)PIP1090459
|b 4
700 1 _ |a Taibl, Stefanie
|b 5
700 1 _ |a Bimashofer, Gesara
|b 6
700 1 _ |a Stahn, Jochen
|b 7
700 1 _ |a Vaz, Carlos Antonio Fernandes
|b 8
700 1 _ |a Döbeli, Max
|b 9
700 1 _ |a Biautti, Federico
|b 10
700 1 _ |a de Dios Sirvent, Juan
|b 11
700 1 _ |a Liedke, Maciej Oskar
|b 12
700 1 _ |a Butterling, Maik
|b 13
700 1 _ |a Kamiński, Michał
|0 P:(DE-H253)PIP1081135
|b 14
700 1 _ |a Tolkiehn, Martin
|0 P:(DE-H253)PIP1007498
|b 15
700 1 _ |a Vonk, Vedran
|0 P:(DE-H253)PIP1013931
|b 16
700 1 _ |a Stierle, Andreas
|0 P:(DE-H253)PIP1012873
|b 17
700 1 _ |a Wagner, Andreas
|0 P:(DE-H253)PIP1032567
|b 18
700 1 _ |a Tarancon, Albert
|b 19
700 1 _ |a Limbeck, Andreas
|b 20
700 1 _ |a Fleig, Jürgen
|0 P:(DE-H253)PIP1024063
|b 21
773 _ _ |a 10.1002/adfm.202202226
|g Vol. 32, no. 38, p. 2202226 -
|0 PERI:(DE-600)2039420-2
|n 38
|p 2202226
|t Advanced functional materials
|v 32
|y 2022
|x 1057-9257
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/484450/files/Adv%20Funct%20Materials%20-%202022%20-%20Morgenbesser%20-%20Unravelling%20the%20Origin%20of%20Ultra%E2%80%90Low%20Conductivity%20in%20SrTiO3%20Thin%20Films%20Sr-1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/484450/files/Adv%20Funct%20Materials%20-%202022%20-%20Morgenbesser%20-%20Unravelling%20the%20Origin%20of%20Ultra%E2%80%90Low%20Conductivity%20in%20SrTiO3%20Thin%20Films%20Sr-1.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:484450
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1089793
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1089775
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1090459
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 14
|6 P:(DE-H253)PIP1081135
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 15
|6 P:(DE-H253)PIP1007498
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 16
|6 P:(DE-H253)PIP1013931
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 16
|6 P:(DE-H253)PIP1013931
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 17
|6 P:(DE-H253)PIP1012873
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 17
|6 P:(DE-H253)PIP1012873
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 18
|6 P:(DE-H253)PIP1032567
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 18
|6 P:(DE-H253)PIP1032567
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 21
|6 P:(DE-H253)PIP1024063
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV FUNCT MATER : 2019
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2019
|d 2021-01-28
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 1
920 1 _ |0 I:(DE-H253)FS-NL-20120731
|k FS-NL
|l Nanolab
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 _ _ |a I:(DE-H253)FS-NL-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21