000483537 001__ 483537
000483537 005__ 20250123215659.0
000483537 0247_ $$2INSPIRETeX$$aDas:2024jwb
000483537 0247_ $$2inspire$$ainspire:2822542
000483537 0247_ $$2arXiv$$aarXiv:2408.15839
000483537 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-05382
000483537 037__ $$aPUBDB-2022-05382
000483537 041__ $$aEnglish
000483537 082__ $$a520
000483537 088__ $$2arXiv$$aarXiv:2408.15839
000483537 1001_ $$0P:(DE-H253)PIP1088773$$aDas, Samata$$b0$$eCorresponding author$$udesy
000483537 245__ $$aParticle acceleration, escape and non-thermal emission from core-collapse supernovae inside non-identical wind-blown bubbles
000483537 260__ $$c2024
000483537 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1737633064_198119
000483537 3367_ $$2ORCID$$aWORKING_PAPER
000483537 3367_ $$028$$2EndNote$$aElectronic Article
000483537 3367_ $$2DRIVER$$apreprint
000483537 3367_ $$2BibTeX$$aARTICLE
000483537 3367_ $$2DataCite$$aOutput Types/Working Paper
000483537 500__ $$aA&A, 689 (2024) A9
000483537 520__ $$aIn the core-collapse scenario, the supernova remnants evolve inside the complex wind-blown bubbles, structured by massive progenitors during their lifetime. Therefore, particle acceleration and the emissions from these SNRs can carry the fingerprints of the evolutionary sequences of the progenitor stars. We time-dependently investigate the impact of the ambient environment of core-collapse SNRs on particle spectra and the emissions. We use the RATPaC code to model the particle acceleration at the SNRs with progenitors having ZAMS masses of 20 Msol and 60 Msol. We have constructed the pre-supernova circumstellar medium by solving the hydrodynamic equations for the lifetime of the progenitor stars. Then, the transport equation for cosmic rays, and magnetic turbulence in test-particle approximation along with the induction equation for the evolution of large-scale magnetic field have been solved simultaneously with the hydrodynamic equations for the expansion of SNRs inside the pre-supernova CSM. The structure of the wind bubbles along with the magnetic field and the scattering turbulence regulate the spectra of accelerated particles for both SNRs. For the 60 Msol progenitor the spectral index reaches 2.4 even below 10 GeV during the propagation of the SNR shock inside the hot shocked wind. In contrast, we have not observed persistent soft spectra at earlier evolutionary stages of the SNR with 20 Msol progenitor, for which the spectral index becomes 2.2 only for a brief period. Later, the spectra become soft above ~10 GeV for both SNRs, as weak driving of turbulence permits the escape of high-energy particles from the remnants. The emission morphology of the SNRs strongly depends on the type of progenitors. For instance, the radio morphology of the SNR with 20 Msol progenitor is centre-filled at early stages whereas that for the more massive progenitor is shell-like.
000483537 536__ $$0G:(DE-HGF)POF4-613$$a613 - Matter and Radiation from the Universe (POF4-613)$$cPOF4-613$$fPOF IV$$x0
000483537 536__ $$0G:(GEPRIS)445052434$$aDFG project G:(GEPRIS)445052434 - SFB 1491: Das Wechselspiel der kosmischen Materie - von der Quelle bis zum Signal (445052434)$$c445052434$$x1
000483537 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000483537 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000483537 7001_ $$0P:(DE-H253)PIP1019264$$aBrose, Robert$$b1
000483537 7001_ $$0P:(DE-H253)PIP1010085$$aPohl, Martin$$b2$$udesy
000483537 7001_ $$0P:(DE-H253)PIP1088512$$aMeyer, Dominique M.-A.$$b3
000483537 7001_ $$0P:(DE-H253)PIP1032356$$aSushch, Iurii$$b4$$udesy
000483537 8564_ $$uhttps://bib-pubdb1.desy.de/record/483537/files/HTML-Approval_of_scientific_publication.html
000483537 8564_ $$uhttps://bib-pubdb1.desy.de/record/483537/files/PDF-Approval_of_scientific_publication.pdf
000483537 8564_ $$uhttps://bib-pubdb1.desy.de/record/483537/files/2408.15839v1.pdf$$yOpenAccess
000483537 8564_ $$uhttps://bib-pubdb1.desy.de/record/483537/files/PAPER_DASSAMATA.pdf$$yRestricted
000483537 8564_ $$uhttps://bib-pubdb1.desy.de/record/483537/files/2408.15839v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000483537 8564_ $$uhttps://bib-pubdb1.desy.de/record/483537/files/PAPER_DASSAMATA.pdf?subformat=pdfa$$xpdfa$$yRestricted
000483537 909CO $$ooai:bib-pubdb1.desy.de:483537$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000483537 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1088773$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000483537 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1088773$$aExternal Institute$$b0$$kExtern
000483537 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1019264$$aExternal Institute$$b1$$kExtern
000483537 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1010085$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000483537 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1088512$$aExternal Institute$$b3$$kExtern
000483537 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1032356$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000483537 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1032356$$aExternal Institute$$b4$$kExtern
000483537 9131_ $$0G:(DE-HGF)POF4-613$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vMatter and Radiation from the Universe$$x0
000483537 9141_ $$y2024
000483537 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000483537 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000483537 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000483537 9201_ $$0I:(DE-H253)Z_THAT-20210408$$kZ_THAT$$lTheoretische Astroteilchenphysik$$x0
000483537 980__ $$apreprint
000483537 980__ $$aVDB
000483537 980__ $$aUNRESTRICTED
000483537 980__ $$aI:(DE-H253)Z_THAT-20210408
000483537 9801_ $$aFullTexts