001     483496
005     20250715180010.0
024 7 _ |a 10.1021/acs.analchem.2c01701
|2 doi
024 7 _ |a 0003-2700
|2 ISSN
024 7 _ |a 0096-4484
|2 ISSN
024 7 _ |a 1520-6882
|2 ISSN
024 7 _ |a 1541-4655
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-05352
|2 datacite_doi
024 7 _ |a altmetric:135330713
|2 altmetric
024 7 _ |a 36054318
|2 pmid
024 7 _ |a WOS:000851397900001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4294295919
037 _ _ |a PUBDB-2022-05352
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Hammarström, Björn
|0 0000-0002-3422-1325
|b 0
|e Corresponding author
245 _ _ |a Acoustic Focusing of Protein Crystals for In-Line Monitoring and Up-Concentration during Serial Crystallography
260 _ _ |a Columbus, Ohio
|c 2022
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669901347_22454
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a No authors' full-text - Thomas Lane has left DESY
520 _ _ |a Serial femtosecond crystallography (SFX) has become one of the standard techniques at X-ray free-electron lasers (XFELs) to obtain high-resolution structural information from microcrystals of proteins. Nevertheless, reliable sample delivery is still often limiting data collection, as microcrystals can clog both field- and flow-focusing nozzles despite in-line filters. In this study, we developed acoustic 2D focusing of protein microcrystals in capillaries that enables real-time online characterization of crystal size and shape in the sample delivery line after the in-line filter. We used a piezoelectric actuator to create a standing wave perpendicular to the crystal flow, which focused lysozyme microcrystals into a single line inside a silica capillary so that they can be imaged using a high-speed camera. We characterized the acoustic contrast factor, focus size, and the coaxial flow lines and developed a splitting union that enables up-concentration to at least a factor of five. The focus size, flow rates, and geometry may enable an upper limit of up-concentration as high as 200 fold. The novel feedback and concentration control could be implemented for serial crystallography at synchrotrons with minor modifications. It will also aid the development of improved sample delivery systems that will increase SFX data collection rates at XFELs, with potential applications to many proteins that can only be purified and crystallized in small amounts.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Lane, Thomas
|0 P:(DE-H253)PIP1020283
|b 1
700 1 _ |a Batili, Hazal
|0 0000-0002-2537-8216
|b 2
700 1 _ |a Sierra, Raymond
|0 P:(DE-H253)PIP1029991
|b 3
700 1 _ |a Wiklund, Martin
|0 0000-0002-3247-1945
|b 4
700 1 _ |a Sellberg, Jonas A.
|0 P:(DE-H253)PIP1014756
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acs.analchem.2c01701
|g Vol. 94, no. 37, p. 12645 - 12656
|0 PERI:(DE-600)1483443-1
|n 37
|p 12645 - 12656
|t Analytical chemistry
|v 94
|y 2022
|x 0003-2700
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/483496/files/acs.analchem.2c01701.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/483496/files/acs.analchem.2c01701.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:483496
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1020283
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 1
|6 P:(DE-H253)PIP1020283
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1029991
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1014756
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1014756
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANAL CHEM : 2019
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ANAL CHEM : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 1 _ |0 I:(DE-H253)FS-CFEL-1-PBIO-20210408
|k FS-CFEL-1-PBIO
|l FS-CFEL-1 Fachgruppe PBIO
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-CFEL-1-PBIO-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21