TY - JOUR
AU - LaRue, Jerry
AU - Liu, Boyang
AU - Rodrigues, Gabriel L. S.
AU - Liu, Chang
AU - Garrido Torres, Jose Antonio
AU - Schreck, Simon
AU - Diesen, Elias
AU - Weston, Matthew
AU - Ogasawara, Hirohito
AU - Perakis, Fivos
AU - Dell’Angela, Martina
AU - Capotondi, Flavio
AU - Ball, Devon
AU - Carnahan, Conner
AU - Zeri, Gary
AU - Giannessi, Luca
AU - Pedersoli, Emanuele
AU - Naumenko, Denys
AU - Amann, Peter
AU - Nikolov, Ivaylo
AU - Raimondi, Lorenzo
AU - Spezzani, Carlo
AU - Beye, Martin
AU - Voss, Johannes
AU - Wang, Hsin-Yi
AU - Cavalca, Filippo
AU - Gladh, Jörgen
AU - Koroidov, Sergey
AU - Abild-Pedersen, Frank
AU - Kolb, Manuel
AU - Miedema, Piter S.
AU - Costantini, Roberto
AU - Heinz, Tony F.
AU - Luntz, Alan C.
AU - Pettersson, Lars G. M.
AU - Nilsson, Anders
TI - Symmetry-resolved CO desorption and oxidation dynamics on O/Ru(0001) probed at the C K-edge by ultrafast x-ray spectroscopy
JO - The journal of chemical physics
VL - 157
IS - 16
SN - 0021-9606
CY - Melville, NY
PB - American Institute of Physics
M1 - PUBDB-2022-05333
SP - 164705
PY - 2022
AB - We report on carbon monoxide desorption and oxidation induced by 400 nm femtosecond laser excitation on the O/Ru(0001) surface probed by time-resolved x-ray absorption spectroscopy (TR-XAS) at the carbon K-edge. The experiments were performed under constant background pressures of CO (6 × 10<sup>−8</sup> Torr) and O<sub>2</sub> (3 × 10<sup>−8</sup> Torr). Under these conditions, we detect two transient CO species with narrow 2π<sup>*</sup> peaks, suggesting little 2π* interaction with the surface. Based on polarization measurements, we find that these two species have opposing orientations: (1) CO favoring a more perpendicular orientation and (2) CO favoring a more parallel orientation with respect to the surface. We also directly detect gas-phase CO2 using a mass spectrometer and observe weak signatures of bent adsorbed CO2 at slightly higher x-ray energies than the 2π<sup>*</sup> region. These results are compared to previously reported TR-XAS results at the O K-edge, where the CO background pressure was three times lower (2 × 10<sup>−8</sup> Torr) while maintaining the same O<sub>2</sub> pressure. At the lower CO pressure, in the CO 2π<sup>*</sup> region, we observed adsorbed CO and a distribution of OC–O bond lengths close to the CO oxidation transition state, with little indication of gas-like CO. The shift toward “gas-like” CO species may be explained by the higher CO exposure, which blocks O adsorption, decreasing O coverage and increasing CO coverage. These effects decrease the CO desorption barrier through dipole–dipole interaction while simultaneously increasing the CO oxidation barrier.
LB - PUB:(DE-HGF)16
C6 - 36319417
UR - <Go to ISI:>//WOS:000876502600007
DO - DOI:10.1063/5.0114399
UR - https://bib-pubdb1.desy.de/record/483446
ER -