001     483405
005     20230214113323.0
024 7 _ |a Chauhan:2022inm
|2 INSPIRETeX
024 7 _ |a inspire:2166940
|2 inspire
024 7 _ |a arXiv:2210.09810
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2022-05293
|2 datacite_doi
037 _ _ |a PUBDB-2022-05293
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2210.09810
|2 arXiv
100 1 _ |a Chauhan, Ankur
|b 0
245 _ _ |a Towards a New Generation of Monolithic Active Pixel Sensors
260 _ _ |c 2022
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1668434518_380
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 3 pages, 2 figures, presented at 15th Pisa Meeting on Advanced Detectors
520 _ _ |a A new generation of Monolithic Active Pixel Sensors (MAPS), produced in a 65 nm CMOS imaging process, promises higher densities of on-chip circuits and, for a given pixel size, more sophisticated in-pixel logic compared to larger feature size processes. MAPS are a cost-effective alternative to hybrid pixel sensors since flip-chip bonding is not required. In addition, they allow for significant reductions of the material budget of detector systems, due to the smaller physical thicknesses of the active sensor and the absence of a separate readout chip. The TANGERINE project develops a sensor suitable for future Higgs factories as well as for a beam telescope to be used at beam-test facilities. The sensors will have small collection electrodes (order of $\mu$m) to maximize the signal-to-noise ratio, which makes it possible to minimize power dissipation in the circuitry. The first batch of test chips, featuring full front-end amplifiers with Krummenacher feedback, was produced and tested at the Mainzer Mikrotron (MAMI) at the end of 2021. MAMI provides an electron beam with currents up to 100 $\mu$A and an energy of 855 MeV. The analog output signal of the test chips was recorded with a high bandwidth oscilloscope and used to study the charge-sensitive amplifier of the chips in terms of waveform analysis. A beam telescope was used as a reference system to allow for track-based analysis of the recorded data.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
588 _ _ |a Dataset connected to INSPIRE
650 _ 7 |a detector, pixel
|2 INSPIRE
650 _ 7 |a semiconductor detector, pixel
|2 INSPIRE
650 _ 7 |a matter, geometry
|2 INSPIRE
650 _ 7 |a pixel, size
|2 INSPIRE
650 _ 7 |a electron, beam
|2 INSPIRE
650 _ 7 |a density, high
|2 INSPIRE
650 _ 7 |a amplifier
|2 INSPIRE
650 _ 7 |a Mainz Linac
|2 INSPIRE
650 _ 7 |a feedback
|2 INSPIRE
650 _ 7 |a hybrid
|2 INSPIRE
650 _ 7 |a readout
|2 INSPIRE
650 _ 7 |a imaging
|2 INSPIRE
650 _ 7 |a logic
|2 INSPIRE
650 _ 7 |a dissipation
|2 INSPIRE
650 _ 7 |a electrode
|2 INSPIRE
650 _ 7 |a Higgs-factory
|2 INSPIRE
693 _ _ |a DESY II
|f DESY: TestBeamline 21
|1 EXP:(DE-H253)DESYII-20150101
|0 EXP:(DE-H253)TestBeamline21-20150101
|6 EXP:(DE-H253)TestBeamline21-20150101
|x 0
700 1 _ |a Viera, Manuel Del Rio
|0 M.D.Viera.2
|b 1
700 1 _ |a Eckstein, Doris
|b 2
700 1 _ |a Feindt, Finn
|0 P:(DE-H253)PIP1019720
|b 3
|e Corresponding author
|u desy
700 1 _ |a Gregor, Ingrid-Maria
|0 P:(DE-H253)PIP1004563
|b 4
700 1 _ |a Hansen, Karsten
|b 5
700 1 _ |a Huth, Lennart
|b 6
700 1 _ |a Mendes, Larissa
|0 L.Helena.Mendes.1
|b 7
700 1 _ |a Mulyanto, Budi
|b 8
700 1 _ |a Rastorguev, Daniil
|b 9
700 1 _ |a Reckleben, Christian
|b 10
700 1 _ |a Daza, Sara Ruiz
|0 S.R.Daza.1
|b 11
700 1 _ |a Schütze, Paul
|b 12
700 1 _ |a Simancas, Adriana
|b 13
700 1 _ |a Spannagel, Simon
|0 P:(DE-H253)PIP1018940
|b 14
700 1 _ |a Stanitzki, Marcel
|0 P:(DE-H253)PIP1014417
|b 15
700 1 _ |a Velyka, Anastasiia
|b 16
700 1 _ |a Vignola, Gianpiero
|b 17
700 1 _ |a Wennlöf, Håkan
|b 18
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/483405/files/2210.09810v1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/483405/files/2210.09810v1.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:483405
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1019720
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1004563
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 14
|6 P:(DE-H253)PIP1018940
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 15
|6 P:(DE-H253)PIP1014417
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Published
|0 StatID:(DE-HGF)0580
|2 StatID
920 1 _ |0 I:(DE-H253)ATLAS-20120731
|k ATLAS
|l LHC/ATLAS Experiment
|x 0
920 1 _ |0 I:(DE-H253)FHTestBeam-20150203
|k FHTestBeam
|l Detector RD at DESY Test beam
|x 1
920 1 _ |0 I:(DE-H253)FTX-20210408
|k FTX
|l Technol. zukünft. Teilchenph. Experim.
|x 2
920 1 _ |0 I:(DE-H253)FEC-20120731
|k FEC
|l Mikro- und Optoelektronik
|x 3
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)ATLAS-20120731
980 _ _ |a I:(DE-H253)FHTestBeam-20150203
980 _ _ |a I:(DE-H253)FTX-20210408
980 _ _ |a I:(DE-H253)FEC-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21