001     482830
005     20250715173105.0
024 7 _ |a 10.1021/jacs.3c04281
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-04965
|2 datacite_doi
024 7 _ |a altmetric:152005144
|2 altmetric
024 7 _ |a 37494139
|2 pmid
024 7 _ |a WOS:001036869800001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4385289208
037 _ _ |a PUBDB-2022-04965
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Loru, Donatella
|0 P:(DE-H253)PIP1082744
|b 0
245 _ _ |a Quantum tunnelling facilitates the water motion across the surface of phenanthrene
260 _ _ |a Washington, DC
|c 2023
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692877865_1386131
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Quantum tunnelling is a fundamental phenomenon that plays a pivotal role in the motion and interaction of atoms and molecules. In particular, its influence in the interaction between water molecules and carbon surfaces can have significant implications for a multitude of fields ranging from atmospheric chemistry to separation technologies. Here, we unveil at the molecular level the complex motion dynamics of a single water molecule on the planar surface of the polycyclic aromatic hydrocarbon phenanthrene, which was used as a small-scale carbon surface-like model. In this system, the water molecule interacts with the substrate through weak O-H ...$\pi$ hydrogen bonds, in which phenanthrene acts as the hydrogen bond acceptor via the high electron density of its aromatic cloud. The rotational spectrum, which was recorded using chirped-pulse Fourier transform microwave spectroscopy, exhibits characteristic line splittings as dynamical features. The nature of the internal dynamics was elucidated in great detail with the investigation of the isotope-substitution effect on the line splittings in the rotational spectra of the H$_2$$^{18}$O, D$_2$O and HDO isotopologues of the phenanthrene-H$_2$O complex. The spectral analysis revealed a complex internal dynamic showing a concerted tunnelling motion of the water involving its internal rotation and its translation between the two equivalent peripheral rings of phenanthrene. This high-resolution spectroscopy study presents the observation of a tunnelling motion exhibited by the water monomer when interacting with a planar carbon surface with an unprecedented level of detail. This can serve as a small-scale analogue for water motions on large aromatic surfaces, i.e., large polycyclic-aromatic hydrocarbons and graphene.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a ASTROROT - Unraveling interstellar chemistry with broadband microwave spectroscopy and next-generation telescope arrays (638027)
|0 G:(EU-Grant)638027
|c 638027
|f ERC-2014-STG
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Steber, Amanda
|0 P:(DE-H253)PIP1023834
|b 1
700 1 _ |a Perez Cuadrado, Cristobal
|0 P:(DE-H253)PIP1023832
|b 2
700 1 _ |a Obenchain, Daniel
|0 P:(DE-H253)PIP1085623
|b 3
700 1 _ |a Temelso, Berhane
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lopez, Juan Carlos
|0 P:(DE-H253)PIP1025010
|b 5
700 1 _ |a Schnell, Melanie
|0 P:(DE-H253)PIP1013514
|b 6
|e Corresponding author
773 _ _ |a 10.1021/jacs.3c04281
|g Vol. 145, no. 31, p. 17201 - 17210
|0 PERI:(DE-600)1472210-0
|n 31
|p 17201 - 17210
|t Journal of the American Chemical Society
|v 145
|y 2023
|x 0002-7863
856 4 _ |u https://bib-pubdb1.desy.de/record/482830/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/482830/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/482830/files/Screenshot%20%2823%29.png
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/482830/files/Quantum_tunnelling_facilitates_water_motion_across_phenanthrene_surface_publisher_version.pdf
856 4 _ |x icon
|u https://bib-pubdb1.desy.de/record/482830/files/Screenshot%20%2823%29.gif?subformat=icon
856 4 _ |x icon-180
|u https://bib-pubdb1.desy.de/record/482830/files/Screenshot%20%2823%29.jpg?subformat=icon-180
856 4 _ |x icon-700
|u https://bib-pubdb1.desy.de/record/482830/files/Screenshot%20%2823%29.jpg?subformat=icon-700
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/482830/files/jacs.3c04281.pdf
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/482830/files/Quantum_tunnelling_facilitates_water_motion_across_phenanthrene_surface_publisher_version.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/482830/files/jacs.3c04281.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:482830
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1082744
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1082744
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1023834
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 1
|6 P:(DE-H253)PIP1023834
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 1
|6 P:(DE-H253)PIP1023834
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1023832
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1085623
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1085623
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1025010
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1013514
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 6
|6 P:(DE-H253)PIP1013514
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|2 APC
|0 PC:(DE-HGF)0122
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-02-02
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2022-11-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-09
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J AM CHEM SOC : 2022
|d 2023-10-21
920 1 _ |0 I:(DE-H253)FS-SMP-20171124
|k FS-SMP
|l Spectroscopy of molecular processes
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-SMP-20171124
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21