| Home > Publications database > Quantum tunnelling facilitates the water motion across the surface of phenanthrene > print |
| 001 | 482830 | ||
| 005 | 20250715173105.0 | ||
| 024 | 7 | _ | |a 10.1021/jacs.3c04281 |2 doi |
| 024 | 7 | _ | |a 0002-7863 |2 ISSN |
| 024 | 7 | _ | |a 1520-5126 |2 ISSN |
| 024 | 7 | _ | |a 1943-2984 |2 ISSN |
| 024 | 7 | _ | |a 10.3204/PUBDB-2022-04965 |2 datacite_doi |
| 024 | 7 | _ | |a altmetric:152005144 |2 altmetric |
| 024 | 7 | _ | |a 37494139 |2 pmid |
| 024 | 7 | _ | |a WOS:001036869800001 |2 WOS |
| 024 | 7 | _ | |2 openalex |a openalex:W4385289208 |
| 037 | _ | _ | |a PUBDB-2022-04965 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Loru, Donatella |0 P:(DE-H253)PIP1082744 |b 0 |
| 245 | _ | _ | |a Quantum tunnelling facilitates the water motion across the surface of phenanthrene |
| 260 | _ | _ | |a Washington, DC |c 2023 |b ACS Publications |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1692877865_1386131 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Quantum tunnelling is a fundamental phenomenon that plays a pivotal role in the motion and interaction of atoms and molecules. In particular, its influence in the interaction between water molecules and carbon surfaces can have significant implications for a multitude of fields ranging from atmospheric chemistry to separation technologies. Here, we unveil at the molecular level the complex motion dynamics of a single water molecule on the planar surface of the polycyclic aromatic hydrocarbon phenanthrene, which was used as a small-scale carbon surface-like model. In this system, the water molecule interacts with the substrate through weak O-H ...$\pi$ hydrogen bonds, in which phenanthrene acts as the hydrogen bond acceptor via the high electron density of its aromatic cloud. The rotational spectrum, which was recorded using chirped-pulse Fourier transform microwave spectroscopy, exhibits characteristic line splittings as dynamical features. The nature of the internal dynamics was elucidated in great detail with the investigation of the isotope-substitution effect on the line splittings in the rotational spectra of the H$_2$$^{18}$O, D$_2$O and HDO isotopologues of the phenanthrene-H$_2$O complex. The spectral analysis revealed a complex internal dynamic showing a concerted tunnelling motion of the water involving its internal rotation and its translation between the two equivalent peripheral rings of phenanthrene. This high-resolution spectroscopy study presents the observation of a tunnelling motion exhibited by the water monomer when interacting with a planar carbon surface with an unprecedented level of detail. This can serve as a small-scale analogue for water motions on large aromatic surfaces, i.e., large polycyclic-aromatic hydrocarbons and graphene. |
| 536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
| 536 | _ | _ | |a ASTROROT - Unraveling interstellar chemistry with broadband microwave spectroscopy and next-generation telescope arrays (638027) |0 G:(EU-Grant)638027 |c 638027 |f ERC-2014-STG |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
| 700 | 1 | _ | |a Steber, Amanda |0 P:(DE-H253)PIP1023834 |b 1 |
| 700 | 1 | _ | |a Perez Cuadrado, Cristobal |0 P:(DE-H253)PIP1023832 |b 2 |
| 700 | 1 | _ | |a Obenchain, Daniel |0 P:(DE-H253)PIP1085623 |b 3 |
| 700 | 1 | _ | |a Temelso, Berhane |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Lopez, Juan Carlos |0 P:(DE-H253)PIP1025010 |b 5 |
| 700 | 1 | _ | |a Schnell, Melanie |0 P:(DE-H253)PIP1013514 |b 6 |e Corresponding author |
| 773 | _ | _ | |a 10.1021/jacs.3c04281 |g Vol. 145, no. 31, p. 17201 - 17210 |0 PERI:(DE-600)1472210-0 |n 31 |p 17201 - 17210 |t Journal of the American Chemical Society |v 145 |y 2023 |x 0002-7863 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/482830/files/HTML-Approval_of_scientific_publication.html |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/482830/files/PDF-Approval_of_scientific_publication.pdf |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/482830/files/Screenshot%20%2823%29.png |
| 856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/482830/files/Quantum_tunnelling_facilitates_water_motion_across_phenanthrene_surface_publisher_version.pdf |
| 856 | 4 | _ | |x icon |u https://bib-pubdb1.desy.de/record/482830/files/Screenshot%20%2823%29.gif?subformat=icon |
| 856 | 4 | _ | |x icon-180 |u https://bib-pubdb1.desy.de/record/482830/files/Screenshot%20%2823%29.jpg?subformat=icon-180 |
| 856 | 4 | _ | |x icon-700 |u https://bib-pubdb1.desy.de/record/482830/files/Screenshot%20%2823%29.jpg?subformat=icon-700 |
| 856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/482830/files/jacs.3c04281.pdf |
| 856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/482830/files/Quantum_tunnelling_facilitates_water_motion_across_phenanthrene_surface_publisher_version.pdf?subformat=pdfa |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/482830/files/jacs.3c04281.pdf?subformat=pdfa |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:482830 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1082744 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1082744 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1023834 |
| 910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 1 |6 P:(DE-H253)PIP1023834 |
| 910 | 1 | _ | |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften |0 I:(DE-588b)2019024-4 |k MPG |b 1 |6 P:(DE-H253)PIP1023834 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1023832 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1085623 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1085623 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1025010 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1013514 |
| 910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 6 |6 P:(DE-H253)PIP1013514 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
| 914 | 1 | _ | |y 2023 |
| 915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
| 915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
| 915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
| 915 | p | c | |a Helmholtz: American Chemical Society 01/01/2023 |2 APC |0 PC:(DE-HGF)0122 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2022-11-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2021-02-02 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-30 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2022-11-09 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-09 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0571 |2 StatID |b SCOAP3 sponsored Journal |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-09 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-09 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-21 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J AM CHEM SOC : 2022 |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-21 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-21 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b J AM CHEM SOC : 2022 |d 2023-10-21 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-SMP-20171124 |k FS-SMP |l Spectroscopy of molecular processes |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-H253)FS-SMP-20171124 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|