000482830 001__ 482830
000482830 005__ 20250715173105.0
000482830 0247_ $$2doi$$a10.1021/jacs.3c04281
000482830 0247_ $$2ISSN$$a0002-7863
000482830 0247_ $$2ISSN$$a1520-5126
000482830 0247_ $$2ISSN$$a1943-2984
000482830 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-04965
000482830 0247_ $$2altmetric$$aaltmetric:152005144
000482830 0247_ $$2pmid$$a37494139
000482830 0247_ $$2WOS$$aWOS:001036869800001
000482830 0247_ $$2openalex$$aopenalex:W4385289208
000482830 037__ $$aPUBDB-2022-04965
000482830 041__ $$aEnglish
000482830 082__ $$a540
000482830 1001_ $$0P:(DE-H253)PIP1082744$$aLoru, Donatella$$b0
000482830 245__ $$aQuantum tunnelling facilitates the water motion across the surface of phenanthrene
000482830 260__ $$aWashington, DC$$bACS Publications$$c2023
000482830 3367_ $$2DRIVER$$aarticle
000482830 3367_ $$2DataCite$$aOutput Types/Journal article
000482830 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692877865_1386131
000482830 3367_ $$2BibTeX$$aARTICLE
000482830 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000482830 3367_ $$00$$2EndNote$$aJournal Article
000482830 520__ $$aQuantum tunnelling is a fundamental phenomenon that plays a pivotal role in the motion and interaction of atoms and molecules. In particular, its influence in the interaction between water molecules and carbon surfaces can have significant implications for a multitude of fields ranging from atmospheric chemistry to separation technologies. Here, we unveil at the molecular level the complex motion dynamics of a single water molecule on the planar surface of the polycyclic aromatic hydrocarbon phenanthrene, which was used as a small-scale carbon surface-like model. In this system, the water molecule interacts with the substrate through weak O-H ...$\pi$ hydrogen bonds, in which phenanthrene acts as the hydrogen bond acceptor via the high electron density of its aromatic cloud. The rotational spectrum, which was recorded using chirped-pulse Fourier transform microwave spectroscopy, exhibits characteristic line splittings as dynamical features. The nature of the internal dynamics was elucidated in great detail with the investigation of the isotope-substitution effect on the line splittings in the rotational spectra of the H$_2$$^{18}$O, D$_2$O and HDO isotopologues of the phenanthrene-H$_2$O complex. The spectral analysis revealed a complex internal dynamic showing a concerted tunnelling motion of the water involving its internal rotation and its translation between the two equivalent peripheral rings of phenanthrene. This high-resolution spectroscopy study presents the observation of a tunnelling motion exhibited by the water monomer when interacting with a planar carbon surface with an unprecedented level of detail. This can serve as a small-scale analogue for water motions on large aromatic surfaces, i.e., large polycyclic-aromatic hydrocarbons and graphene.
000482830 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000482830 536__ $$0G:(EU-Grant)638027$$aASTROROT - Unraveling interstellar chemistry with broadband microwave spectroscopy and next-generation telescope arrays (638027)$$c638027$$fERC-2014-STG$$x1
000482830 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000482830 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000482830 7001_ $$0P:(DE-H253)PIP1023834$$aSteber, Amanda$$b1
000482830 7001_ $$0P:(DE-H253)PIP1023832$$aPerez Cuadrado, Cristobal$$b2
000482830 7001_ $$0P:(DE-H253)PIP1085623$$aObenchain, Daniel$$b3
000482830 7001_ $$0P:(DE-HGF)0$$aTemelso, Berhane$$b4
000482830 7001_ $$0P:(DE-H253)PIP1025010$$aLopez, Juan Carlos$$b5
000482830 7001_ $$0P:(DE-H253)PIP1013514$$aSchnell, Melanie$$b6$$eCorresponding author
000482830 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.3c04281$$gVol. 145, no. 31, p. 17201 - 17210$$n31$$p17201 - 17210$$tJournal of the American Chemical Society$$v145$$x0002-7863$$y2023
000482830 8564_ $$uhttps://bib-pubdb1.desy.de/record/482830/files/HTML-Approval_of_scientific_publication.html
000482830 8564_ $$uhttps://bib-pubdb1.desy.de/record/482830/files/PDF-Approval_of_scientific_publication.pdf
000482830 8564_ $$uhttps://bib-pubdb1.desy.de/record/482830/files/Screenshot%20%2823%29.png
000482830 8564_ $$uhttps://bib-pubdb1.desy.de/record/482830/files/Quantum_tunnelling_facilitates_water_motion_across_phenanthrene_surface_publisher_version.pdf$$yRestricted
000482830 8564_ $$uhttps://bib-pubdb1.desy.de/record/482830/files/Screenshot%20%2823%29.gif?subformat=icon$$xicon
000482830 8564_ $$uhttps://bib-pubdb1.desy.de/record/482830/files/Screenshot%20%2823%29.jpg?subformat=icon-180$$xicon-180
000482830 8564_ $$uhttps://bib-pubdb1.desy.de/record/482830/files/Screenshot%20%2823%29.jpg?subformat=icon-700$$xicon-700
000482830 8564_ $$uhttps://bib-pubdb1.desy.de/record/482830/files/jacs.3c04281.pdf$$yOpenAccess
000482830 8564_ $$uhttps://bib-pubdb1.desy.de/record/482830/files/Quantum_tunnelling_facilitates_water_motion_across_phenanthrene_surface_publisher_version.pdf?subformat=pdfa$$xpdfa$$yRestricted
000482830 8564_ $$uhttps://bib-pubdb1.desy.de/record/482830/files/jacs.3c04281.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000482830 8767_ $$92023-07-14$$d2023-07-14$$eHybrid-OA$$jPublish and Read$$lACS$$zam 14.7.23 bestätigt, ACS Summary Report September
000482830 909CO $$ooai:bib-pubdb1.desy.de:482830$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000482830 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1082744$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000482830 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1082744$$aExternal Institute$$b0$$kExtern
000482830 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023834$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000482830 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1023834$$aCentre for Free-Electron Laser Science$$b1$$kCFEL
000482830 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1023834$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b1$$kMPG
000482830 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1023832$$aExternal Institute$$b2$$kExtern
000482830 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1085623$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000482830 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085623$$aExternal Institute$$b3$$kExtern
000482830 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1025010$$aExternal Institute$$b5$$kExtern
000482830 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013514$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000482830 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1013514$$aCentre for Free-Electron Laser Science$$b6$$kCFEL
000482830 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000482830 9141_ $$y2023
000482830 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000482830 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000482830 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000482830 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
000482830 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2022-11-09
000482830 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-02
000482830 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000482830 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2022-11-09
000482830 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-09
000482830 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000482830 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-02-02
000482830 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-09
000482830 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000482830 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-09
000482830 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000482830 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2022$$d2023-10-21
000482830 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000482830 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000482830 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000482830 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000482830 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000482830 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000482830 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000482830 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000482830 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
000482830 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ AM CHEM SOC : 2022$$d2023-10-21
000482830 9201_ $$0I:(DE-H253)FS-SMP-20171124$$kFS-SMP$$lSpectroscopy of molecular processes$$x0
000482830 980__ $$ajournal
000482830 980__ $$aVDB
000482830 980__ $$aUNRESTRICTED
000482830 980__ $$aI:(DE-H253)FS-SMP-20171124
000482830 980__ $$aAPC
000482830 9801_ $$aAPC
000482830 9801_ $$aFullTexts