000482180 001__ 482180
000482180 005__ 20230510112743.0
000482180 0247_ $$2INSPIRETeX$$aBierenbaum:2022biv
000482180 0247_ $$2inspire$$ainspire:2601298
000482180 0247_ $$2arXiv$$aarXiv:2211.15337
000482180 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-04667
000482180 037__ $$aPUBDB-2022-04667
000482180 041__ $$aEnglish
000482180 088__ $$2DESY$$aDESY-15-004
000482180 088__ $$2Other$$aDO–TH 15/01
000482180 088__ $$2Other$$aTTP 22–023
000482180 088__ $$2Other$$aSAGEX–20–11
000482180 088__ $$2arXiv$$aarXiv:2211.15337
000482180 088__ $$2Other$$aZU-TH 57/22
000482180 1001_ $$0P:(DE-H253)PIP1005124$$aBierenbaum, Isabella$$b0
000482180 245__ $$a$O(\alpha_s^2$) Polarized Heavy Flavor Corrections to Deep-Inelastic Scattering at {$Q^2 \gg m^2$}
000482180 260__ $$c2022
000482180 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1670248331_22446
000482180 3367_ $$2ORCID$$aWORKING_PAPER
000482180 3367_ $$028$$2EndNote$$aElectronic Article
000482180 3367_ $$2DRIVER$$apreprint
000482180 3367_ $$2BibTeX$$aARTICLE
000482180 3367_ $$2DataCite$$aOutput Types/Working Paper
000482180 500__ $$a58 pages Latex, 12 Figures
000482180 520__ $$aWe calculate the quarkonic $O(\alpha_s^2)$ massive operator matrix elements $\Delta A_{Qg}(N),\Delta A_{Qq}^{\rm PS}(N)$ and $\Delta A_{qq,Q}^{\rm NS}(N)$ for the twist--2 operators whichcontribute to the heavy flavor Wilson coefficients in polarized deeply inelastic scatteringin the region $Q^2 \gg m^2$ to $O(\varepsilon)$ in the case of the inclusive heavy flavorcontributions. The evaluation is performed in Mellin space, without applying theintegration-by-parts method. The result is given in terms of harmonic sums. This leads to asignificant compactification of the operator matrix elements derived previously in \cite{BUZA2},which we partly confirm, and also partly correct. The results allow to determine the heavyflavor Wilson coefficients for $g_1(x,Q^2)$ to $O(\alpha_s^2)$ for all but the power suppressedterms $\propto (m^2/Q^2)^k, k \geq 1$. The results in $z$-space are also presented. We alsodiscuss the small $x$ effects in the polarized case. Numerical results are presentedand we compute the matching coefficients in the two--mass variable flavor number scheme.
000482180 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000482180 588__ $$aDataset connected to INSPIRE
000482180 650_7 $$2INSPIRE$$aheavy quark
000482180 650_7 $$2INSPIRE$$adeep inelastic scattering
000482180 650_7 $$2INSPIRE$$acompactification
000482180 650_7 $$2INSPIRE$$aquarkonium
000482180 650_7 $$2INSPIRE$$ainelastic scattering
000482180 650_7 $$2INSPIRE$$amathematical methods
000482180 650_7 $$2INSPIRE$$asuppression
000482180 650_7 $$2INSPIRE$$anumerical calculations
000482180 650_7 $$2INSPIRE$$aflavor
000482180 693__ $$0EXP:(DE-588)4443767-5$$1EXP:(DE-588)4159571-3$$5EXP:(DE-588)4443767-5$$aHERA$$eHERA: H1$$x0
000482180 7001_ $$0P:(DE-H253)PIP1003764$$aBlümlein, Johannes$$b1$$eCorresponding author
000482180 7001_ $$0P:(DE-H253)PIP1007138$$aFreitas, Abilio de$$b2
000482180 7001_ $$0P:(DE-HGF)0$$aGoedicke, Alexander$$b3
000482180 7001_ $$0P:(DE-H253)PIP1005984$$aKlein, Sebastian$$b4
000482180 7001_ $$0P:(DE-HGF)0$$aSchoenwald, kay$$b5
000482180 8564_ $$uhttps://bib-pubdb1.desy.de/record/482180/files/HTML-Approval_of_scientific_publication.html
000482180 8564_ $$uhttps://bib-pubdb1.desy.de/record/482180/files/PDF-Approval_of_scientific_publication.pdf
000482180 8564_ $$uhttps://bib-pubdb1.desy.de/record/482180/files/2211.15337v1.pdf$$yOpenAccess
000482180 8564_ $$uhttps://bib-pubdb1.desy.de/record/482180/files/2211.15337v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000482180 909CO $$ooai:bib-pubdb1.desy.de:482180$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000482180 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005124$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000482180 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003764$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000482180 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007138$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000482180 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-HGF)0$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000482180 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1005984$$aExternal Institute$$b4$$kExtern
000482180 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000482180 9141_ $$y2022
000482180 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000482180 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000482180 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000482180 9201_ $$0I:(DE-H253)Z_ZPPT-20210408$$kZ_ZPPT$$lZeuthen Particle PhysicsTheory$$x0
000482180 980__ $$apreprint
000482180 980__ $$aVDB
000482180 980__ $$aUNRESTRICTED
000482180 980__ $$aI:(DE-H253)Z_ZPPT-20210408
000482180 9801_ $$aFullTexts