000482164 001__ 482164
000482164 005__ 20230214113219.0
000482164 0247_ $$2INSPIRETeX$$aHartung:2021wqg
000482164 0247_ $$2inspire$$ainspire:1986659
000482164 0247_ $$2arXiv$$aarXiv:2112.05069
000482164 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-04658
000482164 037__ $$aPUBDB-2022-04658
000482164 041__ $$aEnglish
000482164 088__ $$2arXiv$$aarXiv:2112.05069
000482164 1001_ $$0P:(DE-HGF)0$$aHartung, Tobias$$b0
000482164 245__ $$aLattice field computations via recursive numerical integration
000482164 260__ $$c2022
000482164 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1662107695_3506
000482164 3367_ $$2ORCID$$aWORKING_PAPER
000482164 3367_ $$028$$2EndNote$$aElectronic Article
000482164 3367_ $$2DRIVER$$apreprint
000482164 3367_ $$2BibTeX$$aARTICLE
000482164 3367_ $$2DataCite$$aOutput Types/Working Paper
000482164 500__ $$aarXiv admin note: text overlap with arXiv:2011.05451
000482164 520__ $$aWe investigate the application of efficient recursive numerical integration strategies to models in lattice gauge theory from quantum field theory. Given the coupling structure of the physics problems and the group structure within lattice cubature rules for numerical integration, we show how to approach these problems efficiently by means of Fast Fourier Transform techniques. In particular, we consider applications to the quantum mechanical rotor and compact $U(1)$ lattice gauge theory, where the physical dimensions are two and three. This proceedings article reviews our results presented in J. Comput. Phys 443 (2021) 110527.
000482164 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000482164 588__ $$aDataset connected to CrossRef Conference, INSPIRE
000482164 650_7 $$2INSPIRE$$alattice field theory
000482164 650_7 $$2INSPIRE$$alattice
000482164 650_7 $$2INSPIRE$$aFourier transformation
000482164 650_7 $$2INSPIRE$$aquantum mechanics
000482164 650_7 $$2INSPIRE$$aU(1)
000482164 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000482164 7001_ $$0P:(DE-H253)PIP1003636$$aJansen, Karl$$b1
000482164 7001_ $$aKuo, Frances Y.$$b2
000482164 7001_ $$0P:(DE-HGF)0$$aLeövey, Hernan$$b3$$eCorresponding author
000482164 7001_ $$aNuyens, Dirk$$b4
000482164 7001_ $$aSloan, Ian H.$$b5
000482164 8564_ $$uhttps://bib-pubdb1.desy.de/record/482164/files/2112.05069v1.pdf$$yOpenAccess
000482164 8564_ $$uhttps://bib-pubdb1.desy.de/record/482164/files/2112.05069v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000482164 909CO $$ooai:bib-pubdb1.desy.de:482164$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000482164 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003636$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000482164 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000482164 9141_ $$y2022
000482164 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000482164 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000482164 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000482164 9201_ $$0I:(DE-H253)Z_ZPPT-20210408$$kZ_ZPPT$$lZeuthen Particle PhysicsTheory$$x0
000482164 9201_ $$0I:(DE-H253)ZEU-THEO-20120731$$kZEU-THEO$$lTheorie$$x1
000482164 980__ $$apreprint
000482164 980__ $$aVDB
000482164 980__ $$aUNRESTRICTED
000482164 980__ $$aI:(DE-H253)Z_ZPPT-20210408
000482164 980__ $$aI:(DE-H253)ZEU-THEO-20120731
000482164 9801_ $$aFullTexts