001     481544
005     20250715175932.0
024 7 _ |a 10.1088/1757-899X/1249/1/012040
|2 doi
024 7 _ |a 1757-8981
|2 ISSN
024 7 _ |a 1757-899X
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-04439
|2 datacite_doi
024 7 _ |2 openalex
|a openalex:W4302332103
037 _ _ |a PUBDB-2022-04439
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Sjögren-Levin, E.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 42nd Risø International Symposium on Materials Science Microstructural variability: Processing, analysis, mechanisms and properties
|c Roskilde
|d 2022-09-05 - 2022-09-09
|w Denmark
245 _ _ |a Separation of XRD peak profiles in single-phase metals with bimodal grain structure to analyze stress partitioning
260 _ _ |a London [u.a.]
|c 2022
|b Institute of Physics
300 _ _ |a 7
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1662636375_24379
|2 PUB:(DE-HGF)
520 _ _ |a Materials with bimodal grain size distributions have an attractive combination of strength and ductility. Harmonic structure materials are a category of bimodal-structure materials with a specific microstructure design. The deformation mechanisms of such novel materials during the early stages of deformation are not well understood. Thus, we deformed nickel with harmonic structure in tension until a true strain of 0.04 while recording powder diffraction patterns with high-energy synchrotron X-rays. Line profile analysis based on such data enables quantification of stress states and lattice defect densities in different phases in multi-phase materials. Bimodal size distributions in single-phase materials add extra complexity due to the absence of differences in composition and crystal structure causing the diffraction peaks from fine and coarse grains to appear at the same diffraction angles. Therefore, prior to any meaningful line profile analysis, the respective diffraction profiles need to be separated. A general method for automatically separating profiles originating from different grain fractions in bimodal materials is presented in this work.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a SWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)
|0 G:(DE-HGF)2020_Join2-SWEDEN-DESY
|c 2020_Join2-SWEDEN-DESY
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P21.2
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P21.2-20150101
|6 EXP:(DE-H253)P-P21.2-20150101
|x 0
700 1 _ |a Pantleon, Wolfgang
|0 P:(DE-H253)PIP1013398
|b 1
700 1 _ |a Ahadi, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hegedüs, Z.
|0 P:(DE-H253)PIP1083297
|b 3
700 1 _ |a Lienert, U.
|0 P:(DE-H253)PIP1016210
|b 4
700 1 _ |a Tsuji, N.
|0 P:(DE-H253)PIP1082534
|b 5
700 1 _ |a Ameyama, K.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Orlov, D.
|0 P:(DE-H253)PIP1023989
|b 7
|e Corresponding author
773 _ _ |a 10.1088/1757-899X/1249/1/012040
|g Vol. 1249, no. 1, p. 012040 -
|0 PERI:(DE-600)2506501-4
|n 1
|p 012040
|t IOP conference series / Materials science and engineering
|v 1249
|y 2022
|x 1757-8981
856 4 _ |u https://iopscience.iop.org/article/10.1088/1757-899X/1249/1/012040/pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/481544/files/Sj%C3%B6gren-Levin_2022_IOP_Conf._Ser.%20_Mater._Sci._Eng._1249_012040.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/481544/files/Sj%C3%B6gren-Levin_2022_IOP_Conf._Ser.%20_Mater._Sci._Eng._1249_012040.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:481544
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1013398
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1083297
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1016210
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1082534
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1023989
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-27
|w ger
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-D-20190712
|k FS-PET-D
|l Experimentebetreuung PETRA III
|x 1
920 1 _ |0 I:(DE-H253)LUND-20191211
|k LUND
|l Lund University
|x 2
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PET-D-20190712
980 _ _ |a I:(DE-H253)LUND-20191211
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21