000481504 001__ 481504
000481504 005__ 20230213123300.0
000481504 020__ $$a978-3-95450-227-1
000481504 0247_ $$2doi$$a10.18429/JACOW-IPAC2022-TUPOTK011
000481504 0247_ $$2inspire$$ainspire:2137277
000481504 0247_ $$2datacite_doi$$a10.3204/PUBDB-2022-04407
000481504 037__ $$aPUBDB-2022-04407
000481504 041__ $$aEnglish
000481504 1001_ $$0P:(DE-H253)PIP1031724$$aWolff, Jonas$$b0$$eCorresponding author
000481504 1112_ $$a13th International Particle Accelerator Conference$$cBangkok$$d2022-06-12 - 2022-06-17$$gIPAC'22$$wThailand
000481504 245__ $$aCommissioning of a New Magnetometric Mapping System for SRF Cavity Performance Tests
000481504 260__ $$a[Geneva]$$bJACoW Publishing, Geneva, Switzerland$$c2022
000481504 29510 $$aProceedings of the 13th International Particle Accelerator Conference, IPAC2022, Bangkok, Thailand
000481504 300__ $$a1215-1218
000481504 3367_ $$2ORCID$$aCONFERENCE_PAPER
000481504 3367_ $$033$$2EndNote$$aConference Paper
000481504 3367_ $$2BibTeX$$aINPROCEEDINGS
000481504 3367_ $$2DRIVER$$aconferenceObject
000481504 3367_ $$2DataCite$$aOutput Types/Conference Paper
000481504 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1666769777_8285
000481504 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000481504 500__ $$aLiteraturangaben;
000481504 520__ $$aMagnetic flux trapped in the niobium bulk material of superconducting radio frequency (SRF) cavities degrades their quality factor and the accelerating gradient. The sensitivity for flux trapping is mainly determined by the treatment and the geometry of the cavity as well as the niobium grain size and orientation. To potentially improve the flux expulsion characteristics of SRF cavities and hence the efficiency of future accelerator facilities, further studies of the trapping behavior are essential. For this purpose a magnetometric mapping system to monitor the magnetic flux along the outer cavity surface of 1.3 GHz TESLA-Type single-cell SRF cavities has been developed and is currently in the commissioning phase at DESY. Contrary to similar approaches, this system digitizes the sensor signals already inside of the cryostat to extensively reduce the number of required cable feedthroughs. Furthermore, the signal-to-noise ratio (SNR) and consequently the measuring sensitivity can be enhanced by shorter analog signal lines, less thermal noise and the Mu-metal shielding of the cryostat. In this contribution test results gained by a prototype of the mapping system are presented.
000481504 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000481504 588__ $$aDataset connected to DataCite
000481504 650_7 $$2Other$$aAccelerator Physics
000481504 650_7 $$2Other$$aMC7: Accelerator Technology
000481504 693__ $$0EXP:(DE-H253)SRF-RD-20221201$$5EXP:(DE-H253)SRF-RD-20221201$$eSuperconductivity Radio Frequency Research and Development$$x0
000481504 7001_ $$0P:(DE-H253)PIP1002664$$aEschke, Juergen$$b1$$udesy
000481504 7001_ $$0P:(DE-HGF)0$$aGössel, Andre$$b2
000481504 7001_ $$0P:(DE-H253)PIP1032393$$aHillert, Wolfgang$$b3
000481504 7001_ $$0P:(DE-H253)PIP1001641$$aReschke, Detlef$$b4$$udesy
000481504 7001_ $$0P:(DE-H253)PIP1006596$$aSteder, Lea$$b5$$udesy
000481504 7001_ $$0P:(DE-H253)PIP1093055$$aTrelle, Lennart$$b6$$udesy
000481504 773__ $$a10.18429/JACOW-IPAC2022-TUPOTK011
000481504 8564_ $$uhttps://accelconf.web.cern.ch/ipac2022/papers/tupotk011.pdf
000481504 8564_ $$uhttps://bib-pubdb1.desy.de/record/481504/files/HTML-Approval_of_scientific_publication.html
000481504 8564_ $$uhttps://bib-pubdb1.desy.de/record/481504/files/PDF-Approval_of_scientific_publication.pdf
000481504 8564_ $$uhttps://bib-pubdb1.desy.de/record/481504/files/tupotk011.pdf$$yOpenAccess
000481504 8564_ $$uhttps://bib-pubdb1.desy.de/record/481504/files/tupotk011.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000481504 909CO $$ooai:bib-pubdb1.desy.de:481504$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000481504 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1031724$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000481504 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002664$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000481504 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-HGF)0$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000481504 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1032393$$aCentre for Free-Electron Laser Science$$b3$$kCFEL
000481504 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1032393$$aExternal Institute$$b3$$kExtern
000481504 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001641$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000481504 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006596$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000481504 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1093055$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000481504 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and Technologies$$vAccelerator Research and Development$$x0
000481504 9141_ $$y2022
000481504 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000481504 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000481504 9201_ $$0I:(DE-H253)MSL-20170609$$kMSL$$lSupraleitende Beschleuniger Technologie$$x0
000481504 9201_ $$0I:(DE-H253)MKS1-20210408$$kMKS1$$lKryogenik$$x1
000481504 9201_ $$0I:(DE-H253)CFEL-ACC-20161114$$kCFEL-ACC$$lUNI/EXP (Group Leader: Wolfgang Hillert (Rossbach))$$x2
000481504 980__ $$acontrib
000481504 980__ $$aVDB
000481504 980__ $$aUNRESTRICTED
000481504 980__ $$acontb
000481504 980__ $$aI:(DE-H253)MSL-20170609
000481504 980__ $$aI:(DE-H253)MKS1-20210408
000481504 980__ $$aI:(DE-H253)CFEL-ACC-20161114
000481504 9801_ $$aFullTexts