001     481486
005     20250724151717.0
024 7 _ |a 10.1016/j.jmatprotec.2022.117738
|2 doi
024 7 _ |a 0924-0136
|2 ISSN
024 7 _ |a 1873-4774
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2022-04389
|2 datacite_doi
024 7 _ |a WOS:000888575200001
|2 WOS
024 7 _ |a openalex:W4288455802
|2 openalex
037 _ _ |a PUBDB-2022-04389
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Hollatz, S.
|0 P:(DE-H253)PIP1092102
|b 0
|e Corresponding author
245 _ _ |a Pore formation and melt pool analysis of laser welded Al-Cu joints using synchrotron radiation
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661864041_2340
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Known as challenging material combination, the welding of aluminium and copper, both with strongly different thermophysical properties, causes joining failures such as pores, cracks or intermetallic phases in the solidified welding area. To investigate the mixing of the materials and the occurrence of pores, the laser welding process is observed with synchrotron radiation which visualizes the phase boundaries between solid, liquid and gaseous material phases. This allows the visualization of pore formation and density differences of the materials inside the melt pool. In this investigation, pore formation in front and bottom of the keyhole is observed. The movement of the bubbles in the melt pool can be tracked until solidification at the material transition. Regarding the intermixing of the materials, the high-speed images show a fluctuating copper flow towards the keyhole and a material mixing over the entire aluminium melt pool depth. By understanding the mechanisms, compensatory measures for an improved process can be developed to enable the usability of aluminium and copper connections, for example in electromobility applications.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20191140 (I-20191140)
|0 G:(DE-H253)I-20191140
|c I-20191140
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P07
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P07-20150101
|6 EXP:(DE-H253)P-P07-20150101
|x 0
700 1 _ |a Hummel, M.
|0 P:(DE-H253)PIP1087670
|b 1
700 1 _ |a Olowinsky, A.
|0 P:(DE-H253)PIP1090446
|b 2
700 1 _ |a Gillner, A.
|0 P:(DE-H253)PIP1090538
|b 3
700 1 _ |a Beckmann, F.
|0 P:(DE-H253)PIP1002967
|b 4
700 1 _ |a Moosmann, J.
|0 P:(DE-H253)PIP1030371
|b 5
773 _ _ |a 10.1016/j.jmatprotec.2022.117738
|g Vol. 309, p. 117738 -
|0 PERI:(DE-600)2012658-X
|p 117738
|t Journal of materials processing technology
|v 309
|y 2022
|x 0924-0136
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/481486/files/1-s2.0-S0924013622002497-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/481486/files/1-s2.0-S0924013622002497-main.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:481486
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1092102
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1087670
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1090446
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1090538
910 1 _ |a Helmholtz-Zentrum Geesthacht
|0 I:(DE-588b)16087541-9
|k HZG
|b 4
|6 P:(DE-H253)PIP1002967
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1002967
910 1 _ |a Helmholtz-Zentrum Geesthacht
|0 I:(DE-588b)16087541-9
|k HZG
|b 5
|6 P:(DE-H253)PIP1030371
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1030371
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-04
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER PROCESS TECH : 2019
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)Hereon-20210428
|k Hereon
|l Helmholtz-Zentrum Hereon
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)Hereon-20210428
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21