% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@ARTICLE{Hoeing:481433,
      author       = {Hoeing, Dominik and Salzwedel, Robert and Worbs, Lena and
                      Zhuang, Yulong and Samanta, Amit Kumar and Luebke, Jannik
                      and Estillore, Armando and Dlugolecki, Karol and Passow,
                      Christopher and Erk, Benjamin and Ekanayake, Nagitha and
                      Ramm, Daniel and Correa Magdalena, Jonathan and
                      Papadopoulou, Christina and Tul Noor, Atia and Schulz,
                      Florian and Selig, Malte and Knorr, Andreas and Ayyer,
                      Kartik and Küpper, Jochen and Lange, Holger},
      title        = {{T}ime-resolved single-particle x-ray scattering reveals
                      electron-density gradients as coherent
                      plasmonic-nanoparticle-oscillation source},
      journal      = {Nano letters},
      volume       = {23},
      number       = {13},
      issn         = {1530-6984},
      address      = {Washington, DC},
      publisher    = {ACS Publ.},
      reportid     = {PUBDB-2022-04365, arXiv:2303.04513},
      pages        = {5943 – 5950},
      year         = {2023},
      note         = {32 pages, 5 figures, 1 supporting information document
                      includedbitte mit dem JA
                      https://bib-pubdb1.desy.de/record/481433 verknüpfen.},
      abstract     = {Dynamics of optically excited plasmonic nanoparticles are
                      presently understood as a series of scattering events
                      involving the initiation of nanoparticle breathing
                      oscillations. According to established models, these are
                      caused by statistical heat transfer from thermalized
                      electrons to the lattice. An additional contribution by
                      hot-electron pressure accounts for phase mismatches between
                      theory and experimental observations. However, direct
                      experimental studies resolving the breathing-oscillation
                      excitation are still missing. We used optical
                      transient-absorption spectroscopy and time-resolved
                      single-particle X-ray diffractive imaging to access the
                      electron system and lattice. The time-resolved
                      single-particle imaging data provided structural information
                      directly on the onset of the breathing oscillation and
                      confirmed the need for an additional excitation mechanism
                      for thermal expansion. We developed a new model that
                      reproduces all of our experimental observations. We
                      identified optically induced electron density gradients as
                      the initial driving source.},
      cin          = {FS-CFEL-CMI / MPSD / UNI/CUI / UNI/EXP / DOOR ; HAS-User /
                      FS-FLASH-O / FS-FLASH-D / FS-LA / FS-DS},
      ddc          = {660},
      cid          = {I:(DE-H253)FS-CFEL-CMI-20220405 / I:(DE-H253)MPSD-20120731
                      / $I:(DE-H253)UNI_CUI-20121230$ /
                      $I:(DE-H253)UNI_EXP-20120731$ / I:(DE-H253)HAS-User-20120731
                      / I:(DE-H253)FS-FLASH-O-20160930 /
                      I:(DE-H253)FS-FLASH-D-20160930 / I:(DE-H253)FS-LA-20130416 /
                      I:(DE-H253)FS-DS-20120731},
      pnm          = {631 - Matter – Dynamics, Mechanisms and Control
                      (POF4-631) / 6G2 - FLASH (DESY) (POF4-6G2) / COMOTION -
                      Controlling the Motion of Complex Molecules and Particles
                      (614507) / DFG project 390715994 - EXC 2056: CUI: Advanced
                      Imaging of Matter (390715994) / DFG project 194651731 - EXC
                      1074: Hamburger Zentrum für ultraschnelle Beobachtung
                      (CUI): Struktur, Dynamik und Kontrolle von Materie auf
                      atomarer Skala (194651731) / DFG project 432266622 -
                      Plasmonkontrolle mit THz Pulsen (432266622) / FS-Proposal:
                      F-20190741 (F-20190741)},
      pid          = {G:(DE-HGF)POF4-631 / G:(DE-HGF)POF4-6G2 /
                      G:(EU-Grant)614507 / G:(GEPRIS)390715994 /
                      G:(GEPRIS)194651731 / G:(GEPRIS)432266622 /
                      G:(DE-H253)F-20190741},
      experiment   = {EXP:(DE-H253)F-BL1-20150101},
      typ          = {PUB:(DE-HGF)16},
      pubmed       = {37350548},
      UT           = {WOS:001018338100001},
      eprint       = {2303.04513},
      howpublished = {arXiv:2303.04513},
      archivePrefix = {arXiv},
      SLACcitation = {$\%\%CITATION$ = $arXiv:2303.04513;\%\%$},
      doi          = {10.1021/acs.nanolett.3c00920},
      url          = {https://bib-pubdb1.desy.de/record/481433},
}