% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Hoeing:481433,
author = {Hoeing, Dominik and Salzwedel, Robert and Worbs, Lena and
Zhuang, Yulong and Samanta, Amit Kumar and Luebke, Jannik
and Estillore, Armando and Dlugolecki, Karol and Passow,
Christopher and Erk, Benjamin and Ekanayake, Nagitha and
Ramm, Daniel and Correa Magdalena, Jonathan and
Papadopoulou, Christina and Tul Noor, Atia and Schulz,
Florian and Selig, Malte and Knorr, Andreas and Ayyer,
Kartik and Küpper, Jochen and Lange, Holger},
title = {{T}ime-resolved single-particle x-ray scattering reveals
electron-density gradients as coherent
plasmonic-nanoparticle-oscillation source},
journal = {Nano letters},
volume = {23},
number = {13},
issn = {1530-6984},
address = {Washington, DC},
publisher = {ACS Publ.},
reportid = {PUBDB-2022-04365, arXiv:2303.04513},
pages = {5943 – 5950},
year = {2023},
note = {32 pages, 5 figures, 1 supporting information document
includedbitte mit dem JA
https://bib-pubdb1.desy.de/record/481433 verknüpfen.},
abstract = {Dynamics of optically excited plasmonic nanoparticles are
presently understood as a series of scattering events
involving the initiation of nanoparticle breathing
oscillations. According to established models, these are
caused by statistical heat transfer from thermalized
electrons to the lattice. An additional contribution by
hot-electron pressure accounts for phase mismatches between
theory and experimental observations. However, direct
experimental studies resolving the breathing-oscillation
excitation are still missing. We used optical
transient-absorption spectroscopy and time-resolved
single-particle X-ray diffractive imaging to access the
electron system and lattice. The time-resolved
single-particle imaging data provided structural information
directly on the onset of the breathing oscillation and
confirmed the need for an additional excitation mechanism
for thermal expansion. We developed a new model that
reproduces all of our experimental observations. We
identified optically induced electron density gradients as
the initial driving source.},
cin = {FS-CFEL-CMI / MPSD / UNI/CUI / UNI/EXP / DOOR ; HAS-User /
FS-FLASH-O / FS-FLASH-D / FS-LA / FS-DS},
ddc = {660},
cid = {I:(DE-H253)FS-CFEL-CMI-20220405 / I:(DE-H253)MPSD-20120731
/ $I:(DE-H253)UNI_CUI-20121230$ /
$I:(DE-H253)UNI_EXP-20120731$ / I:(DE-H253)HAS-User-20120731
/ I:(DE-H253)FS-FLASH-O-20160930 /
I:(DE-H253)FS-FLASH-D-20160930 / I:(DE-H253)FS-LA-20130416 /
I:(DE-H253)FS-DS-20120731},
pnm = {631 - Matter – Dynamics, Mechanisms and Control
(POF4-631) / 6G2 - FLASH (DESY) (POF4-6G2) / COMOTION -
Controlling the Motion of Complex Molecules and Particles
(614507) / DFG project 390715994 - EXC 2056: CUI: Advanced
Imaging of Matter (390715994) / DFG project 194651731 - EXC
1074: Hamburger Zentrum für ultraschnelle Beobachtung
(CUI): Struktur, Dynamik und Kontrolle von Materie auf
atomarer Skala (194651731) / DFG project 432266622 -
Plasmonkontrolle mit THz Pulsen (432266622) / FS-Proposal:
F-20190741 (F-20190741)},
pid = {G:(DE-HGF)POF4-631 / G:(DE-HGF)POF4-6G2 /
G:(EU-Grant)614507 / G:(GEPRIS)390715994 /
G:(GEPRIS)194651731 / G:(GEPRIS)432266622 /
G:(DE-H253)F-20190741},
experiment = {EXP:(DE-H253)F-BL1-20150101},
typ = {PUB:(DE-HGF)16},
pubmed = {37350548},
UT = {WOS:001018338100001},
eprint = {2303.04513},
howpublished = {arXiv:2303.04513},
archivePrefix = {arXiv},
SLACcitation = {$\%\%CITATION$ = $arXiv:2303.04513;\%\%$},
doi = {10.1021/acs.nanolett.3c00920},
url = {https://bib-pubdb1.desy.de/record/481433},
}