TY  - JOUR
AU  - Hoeing, Dominik
AU  - Salzwedel, Robert
AU  - Worbs, Lena
AU  - Zhuang, Yulong
AU  - Samanta, Amit Kumar
AU  - Luebke, Jannik
AU  - Estillore, Armando
AU  - Dlugolecki, Karol
AU  - Passow, Christopher
AU  - Erk, Benjamin
AU  - Ekanayake, Nagitha
AU  - Ramm, Daniel
AU  - Correa Magdalena, Jonathan
AU  - Papadopoulou, Christina
AU  - Tul Noor, Atia
AU  - Schulz, Florian
AU  - Selig, Malte
AU  - Knorr, Andreas
AU  - Ayyer, Kartik
AU  - Küpper, Jochen
AU  - Lange, Holger
TI  - Time-resolved single-particle x-ray scattering reveals electron-density gradients as coherent plasmonic-nanoparticle-oscillation source
JO  - Nano letters
VL  - 23
IS  - 13
SN  - 1530-6984
CY  - Washington, DC
PB  - ACS Publ.
M1  - PUBDB-2022-04365
M1  - arXiv:2303.04513
SP  - 5943 – 5950
PY  - 2023
N1  - 32 pages, 5 figures, 1 supporting information document includedbitte mit dem JA https://bib-pubdb1.desy.de/record/481433 verknüpfen.
AB  - Dynamics of optically excited plasmonic nanoparticles are presently understood as a series of scattering events involving the initiation of nanoparticle breathing oscillations. According to established models, these are caused by statistical heat transfer from thermalized electrons to the lattice. An additional contribution by hot-electron pressure accounts for phase mismatches between theory and experimental observations. However, direct experimental studies resolving the breathing-oscillation excitation are still missing. We used optical transient-absorption spectroscopy and time-resolved single-particle X-ray diffractive imaging to access the electron system and lattice. The time-resolved single-particle imaging data provided structural information directly on the onset of the breathing oscillation and confirmed the need for an additional excitation mechanism for thermal expansion. We developed a new model that reproduces all of our experimental observations. We identified optically induced electron density gradients as the initial driving source.
LB  - PUB:(DE-HGF)16
C6  - 37350548
UR  - <Go to ISI:>//WOS:001018338100001
DO  - DOI:10.1021/acs.nanolett.3c00920
UR  - https://bib-pubdb1.desy.de/record/481433
ER  -