001     481363
005     20220810211447.0
037 _ _ |a PUBDB-2022-04336
041 _ _ |a English
100 1 _ |a Scham, Moritz
|0 P:(DE-H253)PIP1088880
|b 0
|e Corresponding author
111 2 _ |a Center for Data and Computing in Natural Sciences (CDCS) Symposium
|g CDCS2022
|c Hamburg
|d 2022-04-26 - 2022-04-28
|w Germany
245 _ _ |a Generative modeling with Graph Neural Networks for the CMS HGCal
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1660136150_1173
|2 PUB:(DE-HGF)
520 _ _ |a In high energy physics, detailed and time-consuming simulations are used for particle interactions with detectors. For the upcoming High-Luminosity phase of the Large Hadron Collider (HL-LHC), the computational costs of conventional simulation tools exceeds the projected computational resources. Generative machine learning is expected to provide a fast and accurate alternative. The CMS experiment at the LHC will use a new High Granularity Calorimeter (HGCal) to cope with the high particle density. The new HGCal is an imaging calorimeter with a complex geometry and more than 3 million cells. We report on the development of a GraphGAN to simulate particle showers under these challenging conditions.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
693 _ _ |a LHC
|e LHC: CMS
|1 EXP:(DE-588)4398783-7
|0 EXP:(DE-H253)LHC-Exp-CMS-20150101
|5 EXP:(DE-H253)LHC-Exp-CMS-20150101
|x 0
700 1 _ |a Bhattacharya, Soham
|0 P:(DE-H253)PIP1094654
|b 1
|u desy
700 1 _ |a Borras, Kerstin
|0 P:(DE-H253)PIP1002900
|b 2
|u desy
700 1 _ |a Bein, Sam
|b 3
700 1 _ |a Eren, Engin
|b 4
700 1 _ |a Gaede, Frank
|b 5
700 1 _ |a Kasieczka, Gregor
|b 6
700 1 _ |a Korcari, William
|b 7
700 1 _ |a Krücker, Dirk
|0 P:(DE-H253)PIP1005319
|b 8
|u desy
700 1 _ |a McKeown, Peter
|b 9
700 1 _ |a CMS Collaboration
|0 P:(DE-HGF)0
|b 10
|e Collaboration author
856 4 _ |u https://indico.desy.de/event/31214/contributions/120857/
856 4 _ |u https://bib-pubdb1.desy.de/record/481363/files/HelmholtzAI-VC21-DeGeSim.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/481363/files/HelmholtzAI-VC21-DeGeSim.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:481363
|p VDB
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1088880
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1094654
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1002900
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1005319
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2022
920 1 _ |0 I:(DE-H253)CMS-20120731
|k CMS
|l LHC/CMS Experiment
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)CMS-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21