001 | 481120 | ||
005 | 20250715171038.0 | ||
024 | 7 | _ | |a 10.1038/s41467-024-50320-1 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2022-04180 |2 datacite_doi |
024 | 7 | _ | |a arXiv:2403.17855 |2 arXiv |
024 | 7 | _ | |a 39030170 |2 pmid |
024 | 7 | _ | |a WOS:001272982100013 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4400809760 |
037 | _ | _ | |a PUBDB-2022-04180 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
088 | _ | _ | |a arXiv:2403.17855 |2 arXiv |
100 | 1 | _ | |a Lindstroem, Carl Andreas |0 P:(DE-H253)PIP1086874 |b 0 |e Corresponding author |u desy |
245 | _ | _ | |a Emittance preservation in a plasma-wakefield accelerator |
260 | _ | _ | |a [London] |c 2024 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1725529175_2847931 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Nat. Commun. 15, 6097 (2024). 9 pages, 4 figures, 11 supplementary figures |
520 | _ | _ | |a Radio-frequency particle accelerators are engines of discovery, powering high- energy physics and photon science, but are also large and expensive due to their limited accelerating fields. Plasma-wakefield accelerators (PWFAs) provide orders-of-magnitude stronger fields in the charge-density wave behind a particle bunch travelling in a plasma, promising particle accelerators of greatly reduced size and cost. However, PWFAs can easily degrade the beam quality of the bunches they accelerate. Emittance, which determines how tightly beams can be focused, is a critical beam quality in for instance colliders and free-electron lasers, but is particularly prone to degradation. We demonstrate, for the first time, emittance preservation in a high-gradient and high-efficiency PWFA while simultaneously preserving charge and energy spread. This establishes that PWFAs can accelerate without degradation—an essential step toward energy boosters in photon science and multistage facilities for compact high-energy particle colliders. |
536 | _ | _ | |a 621 - Accelerator Research and Development (POF4-621) |0 G:(DE-HGF)POF4-621 |c POF4-621 |f POF IV |x 0 |
536 | _ | _ | |a 6G2 - FLASH (DESY) (POF4-6G2) |0 G:(DE-HGF)POF4-6G2 |c POF4-6G2 |f POF IV |x 1 |
542 | _ | _ | |i 2024-07-19 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-07-19 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
650 | _ | 7 | |a accelerator: wake field |2 INSPIRE |
650 | _ | 7 | |a plasma: wake field |2 INSPIRE |
650 | _ | 7 | |a quality |2 INSPIRE |
650 | _ | 7 | |a beam emittance |2 INSPIRE |
650 | _ | 7 | |a charged particle: energy spectrum |2 INSPIRE |
650 | _ | 7 | |a stability |2 INSPIRE |
693 | _ | _ | |a FLASH |e FLASHForward |1 EXP:(DE-H253)FLASH-20150101 |0 EXP:(DE-H253)FLASHForward-20150101 |5 EXP:(DE-H253)FLASHForward-20150101 |x 0 |
700 | 1 | _ | |a Beinortaite, Judita |0 P:(DE-H253)PIP1094182 |b 1 |u desy |
700 | 1 | _ | |a Björklund Svensson, Jonas Halfdan |0 P:(DE-H253)PIP1094593 |b 2 |u desy |
700 | 1 | _ | |a Boulton, Lewis |0 P:(DE-H253)PIP1086724 |b 3 |
700 | 1 | _ | |a Chappell, James |0 P:(DE-H253)PIP1086959 |b 4 |
700 | 1 | _ | |a Diederichs, Severin |0 P:(DE-H253)PIP1029417 |b 5 |u desy |
700 | 1 | _ | |a Foster, Brian |0 P:(DE-H253)PIP1003141 |b 6 |u desy |
700 | 1 | _ | |a Garland, Matthew James |0 P:(DE-H253)PIP1084257 |b 7 |u desy |
700 | 1 | _ | |a Gonzalez Caminal, Pau |0 P:(DE-H253)PIP1022006 |b 8 |u desy |
700 | 1 | _ | |a Loisch, Gregor |0 P:(DE-H253)PIP1026627 |b 9 |u desy |
700 | 1 | _ | |a Pena Asmus, Felipe Lars |0 P:(DE-H253)PIP1094542 |b 10 |u desy |
700 | 1 | _ | |a Schröder, Sarah |0 P:(DE-H253)PIP1023434 |b 11 |u desy |
700 | 1 | _ | |a Thévenet, Maxence |0 P:(DE-H253)PIP1093740 |b 12 |u desy |
700 | 1 | _ | |a Wesch, Stephan |0 P:(DE-H253)PIP1006306 |b 13 |u desy |
700 | 1 | _ | |a Wing, Matthew |0 P:(DE-H253)PIP1002533 |b 14 |
700 | 1 | _ | |a Wood, Jonathan Christopher |0 P:(DE-H253)PIP1089935 |b 15 |u desy |
700 | 1 | _ | |a D'Arcy, Richard |0 P:(DE-H253)PIP1027904 |b 16 |u desy |
700 | 1 | _ | |a Osterhoff, Jens |0 P:(DE-H253)PIP1012785 |b 17 |u desy |
773 | 1 | 8 | |a 10.1038/s41467-024-50320-1 |b Springer Science and Business Media LLC |d 2024-07-19 |n 1 |p 6097 |3 journal-article |2 Crossref |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
773 | _ | _ | |a 10.1038/s41467-024-50320-1 |g Vol. 15, no. 1, p. 6097 |0 PERI:(DE-600)2553671-0 |n 1 |p 6097 |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
787 | 0 | _ | |a Lindstroem, Carl Andreas et.al. |d 2024 |i IsParent |0 PUBDB-2024-05821 |r arXiv:2403.17855 |t Emittance preservation in a plasma-wakefield accelerator |
856 | 4 | _ | |u https://doi.org/10.1038/s41467-024-50320-1 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/481120/files/Article%20Approval%20Service.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/481120/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/481120/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/481120/files/Article%20Approval%20Service.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/481120/files/Emittance%20preservation%20in%20a%20plasma-wakefield%20accelerator.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/481120/files/s41467-024-50320-1.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/481120/files/Emittance%20preservation%20in%20a%20plasma-wakefield%20accelerator.pdf?subformat=pdfa |x pdfa |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/481120/files/s41467-024-50320-1.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:481120 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1086874 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1094182 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1094593 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1086724 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1086959 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1029417 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1003141 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1003141 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1084257 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1022006 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1022006 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 9 |6 P:(DE-H253)PIP1026627 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1026627 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 10 |6 P:(DE-H253)PIP1094542 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 11 |6 P:(DE-H253)PIP1023434 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 12 |6 P:(DE-H253)PIP1093740 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 13 |6 P:(DE-H253)PIP1006306 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 14 |6 P:(DE-H253)PIP1002533 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 15 |6 P:(DE-H253)PIP1089935 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 16 |6 P:(DE-H253)PIP1027904 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 17 |6 P:(DE-H253)PIP1012785 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G2 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v FLASH (DESY) |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2021-01-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | 1 | _ | |0 I:(DE-H253)FTX-20210408 |k FTX |l Technol. zukünft. Teilchenph. Experim. |x 0 |
920 | 1 | _ | |0 I:(DE-H253)MPA-20200816 |k MPA |l Plasma Accelerators |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FTX-20210408 |
980 | _ | _ | |a I:(DE-H253)MPA-20200816 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1063/1.1660466 |9 -- missing cx lookup -- |1 JMJ Madey |p 1906 - |2 Crossref |u Madey, J. M. J. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971). |t J. Appl. Phys. |v 42 |y 1971 |
999 | C | 5 | |a 10.1038/nphoton.2010.176 |9 -- missing cx lookup -- |1 P Emma |p 641 - |2 Crossref |u Emma, P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010). |t Nat. Photon. |v 4 |y 2010 |
999 | C | 5 | |2 Crossref |u Aicheler, M. (ed.) A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report (CERN, 2012). |
999 | C | 5 | |a 10.2172/1345662 |9 -- missing cx lookup -- |2 Crossref |u Behnke, T. (ed.) The International Linear Collider Technical Design Report (International Linear Collider, 2013). |
999 | C | 5 | |2 Crossref |u Veksler, V. I. Coherent principle of acceleration of charged particles. In Proc. CERN Symposium on High Energy Accelerators and Pion Physics 80–83 (CERN, 1956). |
999 | C | 5 | |a 10.1103/PhysRevLett.43.267 |9 -- missing cx lookup -- |1 T Tajima |p 267 - |2 Crossref |u Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979). |t Phys. Rev. Lett. |v 43 |y 1979 |
999 | C | 5 | |a 10.1103/PhysRevLett.54.693 |9 -- missing cx lookup -- |1 P Chen |p 693 - |2 Crossref |u Chen, P., Dawson, J. M., Huff, R. W. & Katsouleas, T. C. Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Phys. Rev. Lett. 54, 693–696 (1985). |t Phys. Rev. Lett. |v 54 |y 1985 |
999 | C | 5 | |1 R Ruth |y 1985 |2 Crossref |u Ruth, R., Chao, A., Morton, P. & Wilson, P. A plasma wake field accelerator. Part. Accel. 17, 171–189 (1985). |
999 | C | 5 | |a 10.1103/PhysRevLett.95.054802 |9 -- missing cx lookup -- |1 MJ Hogan |p 054802 - |2 Crossref |u Hogan, M. J. et al. Multi-GeV energy gain in a plasma-wakefield accelerator. Phys. Rev. Lett. 54, 054802 (2005). |t Phys. Rev. Lett. |v 54 |y 2005 |
999 | C | 5 | |a 10.1038/nature05538 |9 -- missing cx lookup -- |1 I Blumenfeld |p 741 - |2 Crossref |u Blumenfeld, I. et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741–744 (2007). |t Nature |v 445 |y 2007 |
999 | C | 5 | |a 10.1038/nature13882 |9 -- missing cx lookup -- |1 M Litos |p 92 - |2 Crossref |u Litos, M. et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 515, 92–95 (2014). |t Nature |v 515 |y 2014 |
999 | C | 5 | |a 10.1038/s41586-018-0485-4 |9 -- missing cx lookup -- |1 E Adli |p 363 - |2 Crossref |u Adli, E. et al. Acceleration of electrons in the plasma wakefield of a proton bunch. Nature 561, 363–366 (2018). |t Nature |v 561 |y 2018 |
999 | C | 5 | |a 10.1038/s41586-021-04348-8 |9 -- missing cx lookup -- |1 R D’Arcy |p 58 - |2 Crossref |u D’Arcy, R. et al. Recovery time of a plasma-wakefield accelerator. Nature 603, 58–61 (2022). |t Nature |v 603 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevLett.126.014801 |9 -- missing cx lookup -- |1 CA Lindstrøm |p 014801 - |2 Crossref |u Lindstrøm, C. A. et al. Energy-spread preservation and high efficiency in a plasma-wakefield accelerator. Phys. Rev. Lett. 126, 014801 (2021). |t Phys. Rev. Lett. |v 126 |y 2021 |
999 | C | 5 | |a 10.1038/s41567-020-01116-9 |9 -- missing cx lookup -- |1 R Pompili |p 499 - |2 Crossref |u Pompili, R. et al. Energy spread minimization in a beam-driven plasma wakefield accelerator. Nat. Phys. 17, 499–503 (2021). |t Nat. Phys. |v 17 |y 2021 |
999 | C | 5 | |a 10.1038/s41567-021-01202-6 |9 -- missing cx lookup -- |1 Y Wu |p 801 - |2 Crossref |u Wu, Y. et al. High-throughput injection–acceleration of electron bunches from a linear accelerator to a laser wakefield accelerator. Nat. Phys. 17, 801–806 (2021). |t Nat. Phys. |v 17 |y 2021 |
999 | C | 5 | |a 10.1038/s41586-022-04589-1 |9 -- missing cx lookup -- |1 R Pompili |p 659 - |2 Crossref |u Pompili, R. et al. Free-electron lasing with compact beam-driven plasma wakefield accelerator. Nature 605, 659–662 (2022). |t Nature |v 605 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevSTAB.6.034202 |9 -- missing cx lookup -- |1 K Floettmann |p 034202 - |2 Crossref |u Floettmann, K. Some basic features of the beam emittance. Phys. Rev. Spec. Top. Accel. Beams 6, 034202 (2003). |t Phys. Rev. Spec. Top. Accel. Beams |v 6 |y 2003 |
999 | C | 5 | |a 10.1103/PhysRevA.44.R6189 |9 -- missing cx lookup -- |1 JB Rosenzweig |p R6189 - |2 Crossref |u Rosenzweig, J. B., Breizman, B., Katsouleas, T. & Su, J. J. Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. Phys. Rev. A 44, R6189–R6192 (1991). |t Phys. Rev. A |v 44 |y 1991 |
999 | C | 5 | |a 10.1103/PhysRevLett.96.165002 |9 -- missing cx lookup -- |1 W Lu |p 165002 - |2 Crossref |u Lu, W., Huang, C., Zhou, M., Mori, W. B. & Katsouleas, T. Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002 (2006). |t Phys. Rev. Lett. |v 96 |y 2006 |
999 | C | 5 | |a 10.1088/1748-0221/17/05/P05016 |9 -- missing cx lookup -- |1 CA Lindstrøm |p P05016 - |2 Crossref |u Lindstrøm, C. A. & Thévenet, M. Emittance preservation in advanced accelerators. J. Instrum. 17, P05016 (2022). |t J. Instrum. |v 17 |y 2022 |
999 | C | 5 | |a 10.1016/0003-4916(58)90012-5 |9 -- missing cx lookup -- |1 ED Courant |p 1 - |2 Crossref |u Courant, E. D. & Snyder, H. S. Theory of the alternating-gradient synchrotron. Ann. Phys. 3, 1–48 (1958). |t Ann. Phys. |v 3 |y 1958 |
999 | C | 5 | |a 10.1103/PhysRevLett.93.014802 |9 -- missing cx lookup -- |1 P Muggli |p 014802 - |2 Crossref |u Muggli, P. et al. Meter-scale plasma-wakefield accelerator driven by a matched electron beam. Phys. Rev. Lett. 93, 014802 (2004). |t Phys. Rev. Lett. |v 93 |y 2004 |
999 | C | 5 | |a 10.1103/PhysRevSTAB.15.111303 |9 -- missing cx lookup -- |1 T Mehrling |p 111303 - |2 Crossref |u Mehrling, T., Grebenyuk, J., Tsung, F. S., Floettmann, K. & Osterhoff, J. Transverse emittance growth in staged laser-wakefield acceleration. Phys. Rev. Spec. Top. Accel. Beams 15, 111303 (2012). |t Phys. Rev. Spec. Top. Accel. Beams |v 15 |y 2012 |
999 | C | 5 | |a 10.1016/S0168-9002(98)00187-9 |9 -- missing cx lookup -- |1 R Assmann |p 544 - |2 Crossref |u Assmann, R. & Yokoya, K. Transverse beam dynamics in plasma-based linacs. Nucl. Instrum. Methods Phys. Res. A 410, 544–548 (1998). |t Nucl. Instrum. Methods Phys. Res. A |v 410 |y 1998 |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.22.051302 |9 -- missing cx lookup -- |1 M Thévenet |p 051302 - |2 Crossref |u Thévenet, M. et al. Emittance growth due to misalignment in multistage laser-plasma accelerators. Phys. Rev. Accel. Beams 22, 051302 (2019). |t Phys. Rev. Accel. Beams |v 22 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevLett.67.991 |9 -- missing cx lookup -- |1 DH Whittum |p 991 - |2 Crossref |u Whittum, D. H. et al. Electron-hose instability in the ion-focused regime. Phys. Rev. Lett. 67, 991–994 (1991). |t Phys. Rev. Lett. |v 67 |y 1991 |
999 | C | 5 | |a 10.1103/PhysRevLett.95.195002 |9 -- missing cx lookup -- |1 JB Rosenzweig |p 195002 - |2 Crossref |u Rosenzweig, J. B. et al. Effects of ion motion in intense beam-driven plasma wakefield accelerators. Phys. Rev. Lett. 95, 195002 (2005). |t Phys. Rev. Lett. |v 95 |y 2005 |
999 | C | 5 | |a 10.1103/PhysRevLett.118.244801 |9 -- missing cx lookup -- |1 W An |p 244801 - |2 Crossref |u An, W. et al. Ion motion induced emittance growth of matched electron beams in plasma wakefields. Phys. Rev. Lett. 118, 244801 (2017). |t Phys. Rev. Lett. |v 118 |y 2017 |
999 | C | 5 | |2 Crossref |u Montague, B. W. Emittance growth from multiple scattering in the plasma beat-wave accelerator. In Proc. CAS-ECFA-INFN Workshop: Generation of High Fields for Particle Acceleration to Very-high Energies 208–218 (CERN, 1984). |
999 | C | 5 | |a 10.1063/5.0023776 |9 -- missing cx lookup -- |1 Y Zhao |p 113105 - |2 Crossref |u Zhao, Y. et al. Modeling of emittance growth due to Coulomb collisions in plasma-based accelerators. Phys. Plasmas 27, 113105 (2020). |t Phys. Plasmas |v 27 |y 2020 |
999 | C | 5 | |a 10.1098/rsta.2018.0392 |9 -- missing cx lookup -- |1 R D’Arcy |p 20180392 - |2 Crossref |u D’Arcy, R. et al. FLASHForward: plasma wakefield accelerator science for high-average-power applications. Phil. Trans. R. Soc. A 377, 20180392 (2019). |t Phil. Trans. R. Soc. A |v 377 |y 2019 |
999 | C | 5 | |a 10.1017/hpl.2015.16 |9 -- missing cx lookup -- |1 S Schreiber |p e20 - |2 Crossref |u Schreiber, S. & Faatz, B. The free-electron laser FLASH. High Power Laser Sci. Eng. 3, e20 (2015). |t High Power Laser Sci. Eng. |v 3 |y 2015 |
999 | C | 5 | |a 10.1088/1742-6596/1596/1/012002 |9 -- missing cx lookup -- |1 S Schröder |p 012002 - |2 Crossref |u Schröder, S. et al. Tunable and precise two-bunch generation at FLASHForward. J. Phys. Conf. Ser. 1596, 012002 (2020). |t J. Phys. Conf. Ser. |v 1596 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevLett.101.145002 |9 -- missing cx lookup -- |1 M Tzoufras |p 145002 - |2 Crossref |u Tzoufras, M. et al. Beam loading in the nonlinear regime of plasma-based acceleration. Phys. Rev. Lett. 101, 145002 (2008). |t Phys. Rev. Lett. |v 101 |y 2008 |
999 | C | 5 | |a 10.1103/PhysRevLett.121.064803 |9 -- missing cx lookup -- |1 A Martinez de la Ossa |p 064803 - |2 Crossref |u Martinez de la Ossa, A., Mehrling, T. J. & Osterhoff, J. Intrinsic stabilization of the drive beam in plasma-wakefield accelerators. Phys. Rev. Lett. 121, 064803 (2018). |t Phys. Rev. Lett. |v 121 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.23.052802 |9 -- missing cx lookup -- |1 CA Lindstrøm |p 052802 - |2 Crossref |u Lindstrøm, C. A. et al. Matching small β functions using centroid jitter and two beam position monitors. Phys. Rev. Accel. Beams 23, 052802 (2020). |t Phys. Rev. Accel. Beams |v 23 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevLett.118.174801 |9 -- missing cx lookup -- |1 TJ Mehrling |p 174801 - |2 Crossref |u Mehrling, T. J., Fonseca, R. A., Martinez de la Ossa, A. & Vieira, J. Mitigation of the hose instability in plasma-wakefield accelerators. Phys. Rev. Lett. 118, 174801 (2017). |t Phys. Rev. Lett. |v 118 |y 2017 |
999 | C | 5 | |a 10.1038/1871099a0 |9 -- missing cx lookup -- |1 MG Kelliher |p 1099 - |2 Crossref |u Kelliher, M. G. & Beadle, R. Pulse-shortening in electron linear accelerators. Nature 187, 1099 (1960). |t Nature |v 187 |y 1960 |
999 | C | 5 | |a 10.1063/1.1683315 |9 -- missing cx lookup -- |1 WKH Panofsky |p 206 - |2 Crossref |u Panofsky, W. K. H. & Bander, M. Asymptotic theory of beam break-up in linear accelerators. Rev. Sci. Instrum. 39, 206–212 (1968). |t Rev. Sci. Instrum. |v 39 |y 1968 |
999 | C | 5 | |a 10.1103/PhysRevSTAB.14.084402 |9 -- missing cx lookup -- |1 A Aksoy |p 084402 - |2 Crossref |u Aksoy, A., Schulte, D. & Yavaş, Ö. Beam dynamics simulation for the Compact Linear Collider drive-beam accelerator. Phys. Rev. Spec. Top. Accel. Beams 14, 084402 (2011). |t Phys. Rev. Spec. Top. Accel. Beams |v 14 |y 2011 |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.20.121301 |9 -- missing cx lookup -- |1 V Lebedev |p 121301 - |2 Crossref |u Lebedev, V., Burov, A. & Nagaitsev, S. Efficiency versus instability in plasma accelerators. Phys. Rev. Accel. Beams 20, 121301 (2017). |t Phys. Rev. Accel. Beams |v 20 |y 2017 |
999 | C | 5 | |a 10.1088/1367-2630/acf395 |9 -- missing cx lookup -- |1 B Foster |p 093037 - |2 Crossref |u Foster, B., D’Arcy, R. & Lindstrøm, C. A. A hybrid, asymmetric, linear Higgs factory based on plasma-wakefield and radio-frequency acceleration. New J. Phys. 25, 093037 (2023). |t New J. Phys. |v 25 |y 2023 |
999 | C | 5 | |2 Crossref |u Balakin, V., Novokhatsky, A. & Smirnov, V. VLEPP: transverse beam dynamics. In Proc. 12th International Conference on High Energy Accelerators 119–120 (Fermilab, 1983). |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.20.111301 |9 -- missing cx lookup -- |1 C Benedetti |p 111301 - |2 Crossref |u Benedetti, C., Schroeder, C. B., Esarey, E. & Leemans, W. P. Emittance preservation in plasma-based accelerators with ion motion. Phys. Rev. Accel. Beams 20, 111301 (2017). |t Phys. Rev. Accel. Beams |v 20 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevLett.121.264802 |9 -- missing cx lookup -- |1 TJ Mehrling |p 264802 - |2 Crossref |u Mehrling, T. J., Benedetti, C., Schroeder, C. B., Esarey, E. & Leemans, W. P. Suppression of beam hosing in plasma accelerators with ion motion. Phys. Rev. Lett. 121, 264802 (2018). |t Phys. Rev. Lett. |v 121 |y 2018 |
999 | C | 5 | |a 10.1038/nature16525 |9 -- missing cx lookup -- |1 S Steinke |p 190 - |2 Crossref |u Steinke, S. et al. Multistage coupling of independent laser-plasma accelerators. Nature 530, 190–193 (2016). |t Nature |v 530 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevSTAB.16.011302 |9 -- missing cx lookup -- |1 M Migliorati |p 011302 - |2 Crossref |u Migliorati, M. et al. Intrinsic normalized emittance growth in laser-driven electron accelerators. Phys. Rev. Spec. Top. Accel. Beams 16, 011302 (2013). |t Phys. Rev. Spec. Top. Accel. Beams |v 16 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.24.121301 |9 -- missing cx lookup -- |1 A Zingale |p 121301 - |2 Crossref |u Zingale, A. et al. Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators. Phys. Rev. Accel. Beams 24, 121301 (2021). |t Phys. Rev. Accel. Beams |v 24 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.24.014801 |9 -- missing cx lookup -- |1 CA Lindstrøm |p 014801 - |2 Crossref |u Lindstrøm, C. A. Staging of plasma-wakefield accelerators. Phys. Rev. Accel. Beams 24, 014801 (2021). |t Phys. Rev. Accel. Beams |v 24 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevSTAB.18.030701 |9 -- missing cx lookup -- |1 MW Guetg |p 030701 - |2 Crossref |u Guetg, M. W., Beutner, B., Prat, E. & Reiche, S. Optimization of free electron laser performance by dispersion-based beam-tilt correction. Phys. Rev. Accel. Beams 18, 030701 (2015). |t Phys. Rev. Accel. Beams |v 18 |y 2015 |
999 | C | 5 | |a 10.1038/s41598-021-82687-2 |1 B Marchetti |9 -- missing cx lookup -- |2 Crossref |u Marchetti, B. et al. Experimental demonstration of novel beam characterization using a polarizable X-band transverse deflection structure. Sci. Rep. 11, 3560 (2021). |t Sci. Rep. |v 11 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.23.062801 |9 -- missing cx lookup -- |1 B Schmidt |p 062801 - |2 Crossref |u Schmidt, B., Lockmann, N. M., Schmüser, P. & Wesch, S. Benchmarking coherent radiation spectroscopy as a tool for high-resolution bunch shape reconstruction at free-electron lasers. Phys. Rev. Accel. Beams 23, 062801 (2020). |t Phys. Rev. Accel. Beams |v 23 |y 2020 |
999 | C | 5 | |a 10.1016/j.nima.2004.04.067 |9 -- missing cx lookup -- |1 EL Saldin |p 355 - |2 Crossref |u Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Longitudinal space charge-driven microbunching instability in the TESLA Test Facility linac. Nucl. Instrum. Methods Phys. Res. A 528, 355–359 (2004). |t Nucl. Instrum. Methods Phys. Res. A |v 528 |y 2004 |
999 | C | 5 | |a 10.1103/PhysRevLett.89.185003 |9 -- missing cx lookup -- |1 A Butler |p 185003 - |2 Crossref |u Butler, A., Spence, D. J. & Hooker, S. M. Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide. Phys. Rev. Lett. 89, 185003 (2002). |t Phys. Rev. Lett. |v 89 |y 2002 |
999 | C | 5 | |a 10.1016/S0584-8547(03)00097-1 |9 -- missing cx lookup -- |1 MA Gigosos |p 1489 - |2 Crossref |u Gigosos, M. A., González, M. Á. & Cardeñoso, V. Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochim. Acta Part B 58, 1489–1504 (2003). |t Spectrochim. Acta Part B |v 58 |y 2003 |
999 | C | 5 | |a 10.1063/5.0021117 |9 -- missing cx lookup -- |1 JM Garland |p 013505 - |2 Crossref |u Garland, J. M. et al. Combining laser interferometry and plasma spectroscopy for spatially resolved high- sensitivity plasma density measurements in discharge capillaries. Rev. Sci. Instrum. 92, 013505 (2021). |t Rev. Sci. Instrum. |v 92 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevE.104.015211 |9 -- missing cx lookup -- |1 GJ Boyle |p 015211 - |2 Crossref |u Boyle, G. J. et al. Reduced model of plasma evolution in hydrogen discharge capillary plasmas. Phys. Rev. E 104, 015211 (2021). |t Phys. Rev. E |v 104 |y 2021 |
999 | C | 5 | |2 Crossref |u Kube, G. et al. Transverse beam profile imaging of few-micrometer beam sizes based on a scintillator screen. In Proc. International Beam Instrumentation Conference 330–334 (JACoW, 2016). |
999 | C | 5 | |a 10.1063/1.5041755 |9 -- missing cx lookup -- |1 T Kurz |p 093303 - |2 Crossref |u Kurz, T. et al. Calibration and cross-laboratory implementation of scintillating screens for electron bunch charge determination. Rev. Sci. Instrum. 89, 093303 (2018). |t Rev. Sci. Instrum. |v 89 |y 2018 |
999 | C | 5 | |2 Crossref |u Kube, G. et al. Identification and mitigation of smoke-ring effects in scintillator-based electron beam images and the European XFEL. In Proc. Free Electron Laser Conference 301–306 (JACoW, 2019). |
999 | C | 5 | |a 10.1016/j.cpc.2022.108421 |9 -- missing cx lookup -- |1 S Diederichs |p 108421 - |2 Crossref |u Diederichs, S. et al. HiPACE++: A portable, 3D quasi-static particle-in-cell code. Comput. Phys. Commun. 278, 108421 (2022). |t Comput. Phys. Commun. |v 278 |y 2022 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|