001     481120
005     20250715171038.0
024 7 _ |a 10.1038/s41467-024-50320-1
|2 doi
024 7 _ |a 10.3204/PUBDB-2022-04180
|2 datacite_doi
024 7 _ |a arXiv:2403.17855
|2 arXiv
024 7 _ |a 39030170
|2 pmid
024 7 _ |a WOS:001272982100013
|2 WOS
024 7 _ |2 openalex
|a openalex:W4400809760
037 _ _ |a PUBDB-2022-04180
041 _ _ |a English
082 _ _ |a 500
088 _ _ |a arXiv:2403.17855
|2 arXiv
100 1 _ |a Lindstroem, Carl Andreas
|0 P:(DE-H253)PIP1086874
|b 0
|e Corresponding author
|u desy
245 _ _ |a Emittance preservation in a plasma-wakefield accelerator
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725529175_2847931
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Nat. Commun. 15, 6097 (2024). 9 pages, 4 figures, 11 supplementary figures
520 _ _ |a Radio-frequency particle accelerators are engines of discovery, powering high- energy physics and photon science, but are also large and expensive due to their limited accelerating fields. Plasma-wakefield accelerators (PWFAs) provide orders-of-magnitude stronger fields in the charge-density wave behind a particle bunch travelling in a plasma, promising particle accelerators of greatly reduced size and cost. However, PWFAs can easily degrade the beam quality of the bunches they accelerate. Emittance, which determines how tightly beams can be focused, is a critical beam quality in for instance colliders and free-electron lasers, but is particularly prone to degradation. We demonstrate, for the first time, emittance preservation in a high-gradient and high-efficiency PWFA while simultaneously preserving charge and energy spread. This establishes that PWFAs can accelerate without degradation—an essential step toward energy boosters in photon science and multistage facilities for compact high-energy particle colliders.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a 6G2 - FLASH (DESY) (POF4-6G2)
|0 G:(DE-HGF)POF4-6G2
|c POF4-6G2
|f POF IV
|x 1
542 _ _ |i 2024-07-19
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-07-19
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
650 _ 7 |a accelerator: wake field
|2 INSPIRE
650 _ 7 |a plasma: wake field
|2 INSPIRE
650 _ 7 |a quality
|2 INSPIRE
650 _ 7 |a beam emittance
|2 INSPIRE
650 _ 7 |a charged particle: energy spectrum
|2 INSPIRE
650 _ 7 |a stability
|2 INSPIRE
693 _ _ |a FLASH
|e FLASHForward
|1 EXP:(DE-H253)FLASH-20150101
|0 EXP:(DE-H253)FLASHForward-20150101
|5 EXP:(DE-H253)FLASHForward-20150101
|x 0
700 1 _ |a Beinortaite, Judita
|0 P:(DE-H253)PIP1094182
|b 1
|u desy
700 1 _ |a Björklund Svensson, Jonas Halfdan
|0 P:(DE-H253)PIP1094593
|b 2
|u desy
700 1 _ |a Boulton, Lewis
|0 P:(DE-H253)PIP1086724
|b 3
700 1 _ |a Chappell, James
|0 P:(DE-H253)PIP1086959
|b 4
700 1 _ |a Diederichs, Severin
|0 P:(DE-H253)PIP1029417
|b 5
|u desy
700 1 _ |a Foster, Brian
|0 P:(DE-H253)PIP1003141
|b 6
|u desy
700 1 _ |a Garland, Matthew James
|0 P:(DE-H253)PIP1084257
|b 7
|u desy
700 1 _ |a Gonzalez Caminal, Pau
|0 P:(DE-H253)PIP1022006
|b 8
|u desy
700 1 _ |a Loisch, Gregor
|0 P:(DE-H253)PIP1026627
|b 9
|u desy
700 1 _ |a Pena Asmus, Felipe Lars
|0 P:(DE-H253)PIP1094542
|b 10
|u desy
700 1 _ |a Schröder, Sarah
|0 P:(DE-H253)PIP1023434
|b 11
|u desy
700 1 _ |a Thévenet, Maxence
|0 P:(DE-H253)PIP1093740
|b 12
|u desy
700 1 _ |a Wesch, Stephan
|0 P:(DE-H253)PIP1006306
|b 13
|u desy
700 1 _ |a Wing, Matthew
|0 P:(DE-H253)PIP1002533
|b 14
700 1 _ |a Wood, Jonathan Christopher
|0 P:(DE-H253)PIP1089935
|b 15
|u desy
700 1 _ |a D'Arcy, Richard
|0 P:(DE-H253)PIP1027904
|b 16
|u desy
700 1 _ |a Osterhoff, Jens
|0 P:(DE-H253)PIP1012785
|b 17
|u desy
773 1 8 |a 10.1038/s41467-024-50320-1
|b Springer Science and Business Media LLC
|d 2024-07-19
|n 1
|p 6097
|3 journal-article
|2 Crossref
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
773 _ _ |a 10.1038/s41467-024-50320-1
|g Vol. 15, no. 1, p. 6097
|0 PERI:(DE-600)2553671-0
|n 1
|p 6097
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
787 0 _ |a Lindstroem, Carl Andreas et.al.
|d 2024
|i IsParent
|0 PUBDB-2024-05821
|r arXiv:2403.17855
|t Emittance preservation in a plasma-wakefield accelerator
856 4 _ |u https://doi.org/10.1038/s41467-024-50320-1
856 4 _ |u https://bib-pubdb1.desy.de/record/481120/files/Article%20Approval%20Service.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/481120/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/481120/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/481120/files/Article%20Approval%20Service.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/481120/files/Emittance%20preservation%20in%20a%20plasma-wakefield%20accelerator.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/481120/files/s41467-024-50320-1.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/481120/files/Emittance%20preservation%20in%20a%20plasma-wakefield%20accelerator.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/481120/files/s41467-024-50320-1.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:481120
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1086874
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1094182
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1094593
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1086724
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1086959
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1029417
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1003141
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1003141
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1084257
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1022006
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1022006
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1026627
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1026627
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1094542
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1023434
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1093740
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1006306
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-H253)PIP1002533
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 15
|6 P:(DE-H253)PIP1089935
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 16
|6 P:(DE-H253)PIP1027904
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 17
|6 P:(DE-H253)PIP1012785
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G2
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v FLASH (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-H253)FTX-20210408
|k FTX
|l Technol. zukünft. Teilchenph. Experim.
|x 0
920 1 _ |0 I:(DE-H253)MPA-20200816
|k MPA
|l Plasma Accelerators
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FTX-20210408
980 _ _ |a I:(DE-H253)MPA-20200816
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.1063/1.1660466
|9 -- missing cx lookup --
|1 JMJ Madey
|p 1906 -
|2 Crossref
|u Madey, J. M. J. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971).
|t J. Appl. Phys.
|v 42
|y 1971
999 C 5 |a 10.1038/nphoton.2010.176
|9 -- missing cx lookup --
|1 P Emma
|p 641 -
|2 Crossref
|u Emma, P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).
|t Nat. Photon.
|v 4
|y 2010
999 C 5 |2 Crossref
|u Aicheler, M. (ed.) A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report (CERN, 2012).
999 C 5 |a 10.2172/1345662
|9 -- missing cx lookup --
|2 Crossref
|u Behnke, T. (ed.) The International Linear Collider Technical Design Report (International Linear Collider, 2013).
999 C 5 |2 Crossref
|u Veksler, V. I. Coherent principle of acceleration of charged particles. In Proc. CERN Symposium on High Energy Accelerators and Pion Physics 80–83 (CERN, 1956).
999 C 5 |a 10.1103/PhysRevLett.43.267
|9 -- missing cx lookup --
|1 T Tajima
|p 267 -
|2 Crossref
|u Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).
|t Phys. Rev. Lett.
|v 43
|y 1979
999 C 5 |a 10.1103/PhysRevLett.54.693
|9 -- missing cx lookup --
|1 P Chen
|p 693 -
|2 Crossref
|u Chen, P., Dawson, J. M., Huff, R. W. & Katsouleas, T. C. Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Phys. Rev. Lett. 54, 693–696 (1985).
|t Phys. Rev. Lett.
|v 54
|y 1985
999 C 5 |1 R Ruth
|y 1985
|2 Crossref
|u Ruth, R., Chao, A., Morton, P. & Wilson, P. A plasma wake field accelerator. Part. Accel. 17, 171–189 (1985).
999 C 5 |a 10.1103/PhysRevLett.95.054802
|9 -- missing cx lookup --
|1 MJ Hogan
|p 054802 -
|2 Crossref
|u Hogan, M. J. et al. Multi-GeV energy gain in a plasma-wakefield accelerator. Phys. Rev. Lett. 54, 054802 (2005).
|t Phys. Rev. Lett.
|v 54
|y 2005
999 C 5 |a 10.1038/nature05538
|9 -- missing cx lookup --
|1 I Blumenfeld
|p 741 -
|2 Crossref
|u Blumenfeld, I. et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741–744 (2007).
|t Nature
|v 445
|y 2007
999 C 5 |a 10.1038/nature13882
|9 -- missing cx lookup --
|1 M Litos
|p 92 -
|2 Crossref
|u Litos, M. et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 515, 92–95 (2014).
|t Nature
|v 515
|y 2014
999 C 5 |a 10.1038/s41586-018-0485-4
|9 -- missing cx lookup --
|1 E Adli
|p 363 -
|2 Crossref
|u Adli, E. et al. Acceleration of electrons in the plasma wakefield of a proton bunch. Nature 561, 363–366 (2018).
|t Nature
|v 561
|y 2018
999 C 5 |a 10.1038/s41586-021-04348-8
|9 -- missing cx lookup --
|1 R D’Arcy
|p 58 -
|2 Crossref
|u D’Arcy, R. et al. Recovery time of a plasma-wakefield accelerator. Nature 603, 58–61 (2022).
|t Nature
|v 603
|y 2022
999 C 5 |a 10.1103/PhysRevLett.126.014801
|9 -- missing cx lookup --
|1 CA Lindstrøm
|p 014801 -
|2 Crossref
|u Lindstrøm, C. A. et al. Energy-spread preservation and high efficiency in a plasma-wakefield accelerator. Phys. Rev. Lett. 126, 014801 (2021).
|t Phys. Rev. Lett.
|v 126
|y 2021
999 C 5 |a 10.1038/s41567-020-01116-9
|9 -- missing cx lookup --
|1 R Pompili
|p 499 -
|2 Crossref
|u Pompili, R. et al. Energy spread minimization in a beam-driven plasma wakefield accelerator. Nat. Phys. 17, 499–503 (2021).
|t Nat. Phys.
|v 17
|y 2021
999 C 5 |a 10.1038/s41567-021-01202-6
|9 -- missing cx lookup --
|1 Y Wu
|p 801 -
|2 Crossref
|u Wu, Y. et al. High-throughput injection–acceleration of electron bunches from a linear accelerator to a laser wakefield accelerator. Nat. Phys. 17, 801–806 (2021).
|t Nat. Phys.
|v 17
|y 2021
999 C 5 |a 10.1038/s41586-022-04589-1
|9 -- missing cx lookup --
|1 R Pompili
|p 659 -
|2 Crossref
|u Pompili, R. et al. Free-electron lasing with compact beam-driven plasma wakefield accelerator. Nature 605, 659–662 (2022).
|t Nature
|v 605
|y 2022
999 C 5 |a 10.1103/PhysRevSTAB.6.034202
|9 -- missing cx lookup --
|1 K Floettmann
|p 034202 -
|2 Crossref
|u Floettmann, K. Some basic features of the beam emittance. Phys. Rev. Spec. Top. Accel. Beams 6, 034202 (2003).
|t Phys. Rev. Spec. Top. Accel. Beams
|v 6
|y 2003
999 C 5 |a 10.1103/PhysRevA.44.R6189
|9 -- missing cx lookup --
|1 JB Rosenzweig
|p R6189 -
|2 Crossref
|u Rosenzweig, J. B., Breizman, B., Katsouleas, T. & Su, J. J. Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. Phys. Rev. A 44, R6189–R6192 (1991).
|t Phys. Rev. A
|v 44
|y 1991
999 C 5 |a 10.1103/PhysRevLett.96.165002
|9 -- missing cx lookup --
|1 W Lu
|p 165002 -
|2 Crossref
|u Lu, W., Huang, C., Zhou, M., Mori, W. B. & Katsouleas, T. Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002 (2006).
|t Phys. Rev. Lett.
|v 96
|y 2006
999 C 5 |a 10.1088/1748-0221/17/05/P05016
|9 -- missing cx lookup --
|1 CA Lindstrøm
|p P05016 -
|2 Crossref
|u Lindstrøm, C. A. & Thévenet, M. Emittance preservation in advanced accelerators. J. Instrum. 17, P05016 (2022).
|t J. Instrum.
|v 17
|y 2022
999 C 5 |a 10.1016/0003-4916(58)90012-5
|9 -- missing cx lookup --
|1 ED Courant
|p 1 -
|2 Crossref
|u Courant, E. D. & Snyder, H. S. Theory of the alternating-gradient synchrotron. Ann. Phys. 3, 1–48 (1958).
|t Ann. Phys.
|v 3
|y 1958
999 C 5 |a 10.1103/PhysRevLett.93.014802
|9 -- missing cx lookup --
|1 P Muggli
|p 014802 -
|2 Crossref
|u Muggli, P. et al. Meter-scale plasma-wakefield accelerator driven by a matched electron beam. Phys. Rev. Lett. 93, 014802 (2004).
|t Phys. Rev. Lett.
|v 93
|y 2004
999 C 5 |a 10.1103/PhysRevSTAB.15.111303
|9 -- missing cx lookup --
|1 T Mehrling
|p 111303 -
|2 Crossref
|u Mehrling, T., Grebenyuk, J., Tsung, F. S., Floettmann, K. & Osterhoff, J. Transverse emittance growth in staged laser-wakefield acceleration. Phys. Rev. Spec. Top. Accel. Beams 15, 111303 (2012).
|t Phys. Rev. Spec. Top. Accel. Beams
|v 15
|y 2012
999 C 5 |a 10.1016/S0168-9002(98)00187-9
|9 -- missing cx lookup --
|1 R Assmann
|p 544 -
|2 Crossref
|u Assmann, R. & Yokoya, K. Transverse beam dynamics in plasma-based linacs. Nucl. Instrum. Methods Phys. Res. A 410, 544–548 (1998).
|t Nucl. Instrum. Methods Phys. Res. A
|v 410
|y 1998
999 C 5 |a 10.1103/PhysRevAccelBeams.22.051302
|9 -- missing cx lookup --
|1 M Thévenet
|p 051302 -
|2 Crossref
|u Thévenet, M. et al. Emittance growth due to misalignment in multistage laser-plasma accelerators. Phys. Rev. Accel. Beams 22, 051302 (2019).
|t Phys. Rev. Accel. Beams
|v 22
|y 2019
999 C 5 |a 10.1103/PhysRevLett.67.991
|9 -- missing cx lookup --
|1 DH Whittum
|p 991 -
|2 Crossref
|u Whittum, D. H. et al. Electron-hose instability in the ion-focused regime. Phys. Rev. Lett. 67, 991–994 (1991).
|t Phys. Rev. Lett.
|v 67
|y 1991
999 C 5 |a 10.1103/PhysRevLett.95.195002
|9 -- missing cx lookup --
|1 JB Rosenzweig
|p 195002 -
|2 Crossref
|u Rosenzweig, J. B. et al. Effects of ion motion in intense beam-driven plasma wakefield accelerators. Phys. Rev. Lett. 95, 195002 (2005).
|t Phys. Rev. Lett.
|v 95
|y 2005
999 C 5 |a 10.1103/PhysRevLett.118.244801
|9 -- missing cx lookup --
|1 W An
|p 244801 -
|2 Crossref
|u An, W. et al. Ion motion induced emittance growth of matched electron beams in plasma wakefields. Phys. Rev. Lett. 118, 244801 (2017).
|t Phys. Rev. Lett.
|v 118
|y 2017
999 C 5 |2 Crossref
|u Montague, B. W. Emittance growth from multiple scattering in the plasma beat-wave accelerator. In Proc. CAS-ECFA-INFN Workshop: Generation of High Fields for Particle Acceleration to Very-high Energies 208–218 (CERN, 1984).
999 C 5 |a 10.1063/5.0023776
|9 -- missing cx lookup --
|1 Y Zhao
|p 113105 -
|2 Crossref
|u Zhao, Y. et al. Modeling of emittance growth due to Coulomb collisions in plasma-based accelerators. Phys. Plasmas 27, 113105 (2020).
|t Phys. Plasmas
|v 27
|y 2020
999 C 5 |a 10.1098/rsta.2018.0392
|9 -- missing cx lookup --
|1 R D’Arcy
|p 20180392 -
|2 Crossref
|u D’Arcy, R. et al. FLASHForward: plasma wakefield accelerator science for high-average-power applications. Phil. Trans. R. Soc. A 377, 20180392 (2019).
|t Phil. Trans. R. Soc. A
|v 377
|y 2019
999 C 5 |a 10.1017/hpl.2015.16
|9 -- missing cx lookup --
|1 S Schreiber
|p e20 -
|2 Crossref
|u Schreiber, S. & Faatz, B. The free-electron laser FLASH. High Power Laser Sci. Eng. 3, e20 (2015).
|t High Power Laser Sci. Eng.
|v 3
|y 2015
999 C 5 |a 10.1088/1742-6596/1596/1/012002
|9 -- missing cx lookup --
|1 S Schröder
|p 012002 -
|2 Crossref
|u Schröder, S. et al. Tunable and precise two-bunch generation at FLASHForward. J. Phys. Conf. Ser. 1596, 012002 (2020).
|t J. Phys. Conf. Ser.
|v 1596
|y 2020
999 C 5 |a 10.1103/PhysRevLett.101.145002
|9 -- missing cx lookup --
|1 M Tzoufras
|p 145002 -
|2 Crossref
|u Tzoufras, M. et al. Beam loading in the nonlinear regime of plasma-based acceleration. Phys. Rev. Lett. 101, 145002 (2008).
|t Phys. Rev. Lett.
|v 101
|y 2008
999 C 5 |a 10.1103/PhysRevLett.121.064803
|9 -- missing cx lookup --
|1 A Martinez de la Ossa
|p 064803 -
|2 Crossref
|u Martinez de la Ossa, A., Mehrling, T. J. & Osterhoff, J. Intrinsic stabilization of the drive beam in plasma-wakefield accelerators. Phys. Rev. Lett. 121, 064803 (2018).
|t Phys. Rev. Lett.
|v 121
|y 2018
999 C 5 |a 10.1103/PhysRevAccelBeams.23.052802
|9 -- missing cx lookup --
|1 CA Lindstrøm
|p 052802 -
|2 Crossref
|u Lindstrøm, C. A. et al. Matching small β functions using centroid jitter and two beam position monitors. Phys. Rev. Accel. Beams 23, 052802 (2020).
|t Phys. Rev. Accel. Beams
|v 23
|y 2020
999 C 5 |a 10.1103/PhysRevLett.118.174801
|9 -- missing cx lookup --
|1 TJ Mehrling
|p 174801 -
|2 Crossref
|u Mehrling, T. J., Fonseca, R. A., Martinez de la Ossa, A. & Vieira, J. Mitigation of the hose instability in plasma-wakefield accelerators. Phys. Rev. Lett. 118, 174801 (2017).
|t Phys. Rev. Lett.
|v 118
|y 2017
999 C 5 |a 10.1038/1871099a0
|9 -- missing cx lookup --
|1 MG Kelliher
|p 1099 -
|2 Crossref
|u Kelliher, M. G. & Beadle, R. Pulse-shortening in electron linear accelerators. Nature 187, 1099 (1960).
|t Nature
|v 187
|y 1960
999 C 5 |a 10.1063/1.1683315
|9 -- missing cx lookup --
|1 WKH Panofsky
|p 206 -
|2 Crossref
|u Panofsky, W. K. H. & Bander, M. Asymptotic theory of beam break-up in linear accelerators. Rev. Sci. Instrum. 39, 206–212 (1968).
|t Rev. Sci. Instrum.
|v 39
|y 1968
999 C 5 |a 10.1103/PhysRevSTAB.14.084402
|9 -- missing cx lookup --
|1 A Aksoy
|p 084402 -
|2 Crossref
|u Aksoy, A., Schulte, D. & Yavaş, Ö. Beam dynamics simulation for the Compact Linear Collider drive-beam accelerator. Phys. Rev. Spec. Top. Accel. Beams 14, 084402 (2011).
|t Phys. Rev. Spec. Top. Accel. Beams
|v 14
|y 2011
999 C 5 |a 10.1103/PhysRevAccelBeams.20.121301
|9 -- missing cx lookup --
|1 V Lebedev
|p 121301 -
|2 Crossref
|u Lebedev, V., Burov, A. & Nagaitsev, S. Efficiency versus instability in plasma accelerators. Phys. Rev. Accel. Beams 20, 121301 (2017).
|t Phys. Rev. Accel. Beams
|v 20
|y 2017
999 C 5 |a 10.1088/1367-2630/acf395
|9 -- missing cx lookup --
|1 B Foster
|p 093037 -
|2 Crossref
|u Foster, B., D’Arcy, R. & Lindstrøm, C. A. A hybrid, asymmetric, linear Higgs factory based on plasma-wakefield and radio-frequency acceleration. New J. Phys. 25, 093037 (2023).
|t New J. Phys.
|v 25
|y 2023
999 C 5 |2 Crossref
|u Balakin, V., Novokhatsky, A. & Smirnov, V. VLEPP: transverse beam dynamics. In Proc. 12th International Conference on High Energy Accelerators 119–120 (Fermilab, 1983).
999 C 5 |a 10.1103/PhysRevAccelBeams.20.111301
|9 -- missing cx lookup --
|1 C Benedetti
|p 111301 -
|2 Crossref
|u Benedetti, C., Schroeder, C. B., Esarey, E. & Leemans, W. P. Emittance preservation in plasma-based accelerators with ion motion. Phys. Rev. Accel. Beams 20, 111301 (2017).
|t Phys. Rev. Accel. Beams
|v 20
|y 2017
999 C 5 |a 10.1103/PhysRevLett.121.264802
|9 -- missing cx lookup --
|1 TJ Mehrling
|p 264802 -
|2 Crossref
|u Mehrling, T. J., Benedetti, C., Schroeder, C. B., Esarey, E. & Leemans, W. P. Suppression of beam hosing in plasma accelerators with ion motion. Phys. Rev. Lett. 121, 264802 (2018).
|t Phys. Rev. Lett.
|v 121
|y 2018
999 C 5 |a 10.1038/nature16525
|9 -- missing cx lookup --
|1 S Steinke
|p 190 -
|2 Crossref
|u Steinke, S. et al. Multistage coupling of independent laser-plasma accelerators. Nature 530, 190–193 (2016).
|t Nature
|v 530
|y 2016
999 C 5 |a 10.1103/PhysRevSTAB.16.011302
|9 -- missing cx lookup --
|1 M Migliorati
|p 011302 -
|2 Crossref
|u Migliorati, M. et al. Intrinsic normalized emittance growth in laser-driven electron accelerators. Phys. Rev. Spec. Top. Accel. Beams 16, 011302 (2013).
|t Phys. Rev. Spec. Top. Accel. Beams
|v 16
|y 2013
999 C 5 |a 10.1103/PhysRevAccelBeams.24.121301
|9 -- missing cx lookup --
|1 A Zingale
|p 121301 -
|2 Crossref
|u Zingale, A. et al. Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators. Phys. Rev. Accel. Beams 24, 121301 (2021).
|t Phys. Rev. Accel. Beams
|v 24
|y 2021
999 C 5 |a 10.1103/PhysRevAccelBeams.24.014801
|9 -- missing cx lookup --
|1 CA Lindstrøm
|p 014801 -
|2 Crossref
|u Lindstrøm, C. A. Staging of plasma-wakefield accelerators. Phys. Rev. Accel. Beams 24, 014801 (2021).
|t Phys. Rev. Accel. Beams
|v 24
|y 2021
999 C 5 |a 10.1103/PhysRevSTAB.18.030701
|9 -- missing cx lookup --
|1 MW Guetg
|p 030701 -
|2 Crossref
|u Guetg, M. W., Beutner, B., Prat, E. & Reiche, S. Optimization of free electron laser performance by dispersion-based beam-tilt correction. Phys. Rev. Accel. Beams 18, 030701 (2015).
|t Phys. Rev. Accel. Beams
|v 18
|y 2015
999 C 5 |a 10.1038/s41598-021-82687-2
|1 B Marchetti
|9 -- missing cx lookup --
|2 Crossref
|u Marchetti, B. et al. Experimental demonstration of novel beam characterization using a polarizable X-band transverse deflection structure. Sci. Rep. 11, 3560 (2021).
|t Sci. Rep.
|v 11
|y 2021
999 C 5 |a 10.1103/PhysRevAccelBeams.23.062801
|9 -- missing cx lookup --
|1 B Schmidt
|p 062801 -
|2 Crossref
|u Schmidt, B., Lockmann, N. M., Schmüser, P. & Wesch, S. Benchmarking coherent radiation spectroscopy as a tool for high-resolution bunch shape reconstruction at free-electron lasers. Phys. Rev. Accel. Beams 23, 062801 (2020).
|t Phys. Rev. Accel. Beams
|v 23
|y 2020
999 C 5 |a 10.1016/j.nima.2004.04.067
|9 -- missing cx lookup --
|1 EL Saldin
|p 355 -
|2 Crossref
|u Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Longitudinal space charge-driven microbunching instability in the TESLA Test Facility linac. Nucl. Instrum. Methods Phys. Res. A 528, 355–359 (2004).
|t Nucl. Instrum. Methods Phys. Res. A
|v 528
|y 2004
999 C 5 |a 10.1103/PhysRevLett.89.185003
|9 -- missing cx lookup --
|1 A Butler
|p 185003 -
|2 Crossref
|u Butler, A., Spence, D. J. & Hooker, S. M. Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide. Phys. Rev. Lett. 89, 185003 (2002).
|t Phys. Rev. Lett.
|v 89
|y 2002
999 C 5 |a 10.1016/S0584-8547(03)00097-1
|9 -- missing cx lookup --
|1 MA Gigosos
|p 1489 -
|2 Crossref
|u Gigosos, M. A., González, M. Á. & Cardeñoso, V. Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochim. Acta Part B 58, 1489–1504 (2003).
|t Spectrochim. Acta Part B
|v 58
|y 2003
999 C 5 |a 10.1063/5.0021117
|9 -- missing cx lookup --
|1 JM Garland
|p 013505 -
|2 Crossref
|u Garland, J. M. et al. Combining laser interferometry and plasma spectroscopy for spatially resolved high- sensitivity plasma density measurements in discharge capillaries. Rev. Sci. Instrum. 92, 013505 (2021).
|t Rev. Sci. Instrum.
|v 92
|y 2021
999 C 5 |a 10.1103/PhysRevE.104.015211
|9 -- missing cx lookup --
|1 GJ Boyle
|p 015211 -
|2 Crossref
|u Boyle, G. J. et al. Reduced model of plasma evolution in hydrogen discharge capillary plasmas. Phys. Rev. E 104, 015211 (2021).
|t Phys. Rev. E
|v 104
|y 2021
999 C 5 |2 Crossref
|u Kube, G. et al. Transverse beam profile imaging of few-micrometer beam sizes based on a scintillator screen. In Proc. International Beam Instrumentation Conference 330–334 (JACoW, 2016).
999 C 5 |a 10.1063/1.5041755
|9 -- missing cx lookup --
|1 T Kurz
|p 093303 -
|2 Crossref
|u Kurz, T. et al. Calibration and cross-laboratory implementation of scintillating screens for electron bunch charge determination. Rev. Sci. Instrum. 89, 093303 (2018).
|t Rev. Sci. Instrum.
|v 89
|y 2018
999 C 5 |2 Crossref
|u Kube, G. et al. Identification and mitigation of smoke-ring effects in scintillator-based electron beam images and the European XFEL. In Proc. Free Electron Laser Conference 301–306 (JACoW, 2019).
999 C 5 |a 10.1016/j.cpc.2022.108421
|9 -- missing cx lookup --
|1 S Diederichs
|p 108421 -
|2 Crossref
|u Diederichs, S. et al. HiPACE++: A portable, 3D quasi-static particle-in-cell code. Comput. Phys. Commun. 278, 108421 (2022).
|t Comput. Phys. Commun.
|v 278
|y 2022


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21